Neutrino Physics

D. Naples CTEQ Summer School July 2013

Outline

Part I: Introduction and Neutrinos as Probes

- ► Neutrinos in the SM, brief introduction.
- ► Neutrino experiment challenges
- ν as Probes : Electroweak
- ν as Probes: Nucleon structure and QCD

Part II: Neutrino oscillations beyond the SM

- Neutrino mass and oscillations.
- ► The story of neutrino oscillations.
- Some remaining questions and future

Neutrino Mass

► Direct limits from decay kinematics

$m_{ u_e}$	< 2.2 eV	3 H β -decay
$m_{ u_{\mu}}$	$< 0.16 \; \mathrm{MeV}$	π^+ decay
$m_{ u_{ au}}$	$< 18.2 \; \mathrm{MeV}$	au decay

Most sensitive

Measure the end point energy of the electron in Tritium β-decay

$$^{3}H \rightarrow ~^{3}He + e^{-} + \overline{\nu}_{e}$$

State of the Art (Katrin)

- ► Katrin experiment (starts 2014)
- ► Same technique
 - \rightarrow sensitivity ${\sim}0.2~eV$
- Discovery potential if
 $m_{\nu_e} > 0.35 \text{ eV}.$ $(m_e = \left(\sum_i |U_{ei}|^2 m_i^2\right)^{1/2})$
- Reaching the sensitivity limit of this technique.

Neutrino Mass from Cosmology

- Neutrinos contribute to the (hot) dark matter of the universe and affect structure formation.
- Cosmological observables (CMB, lensing, galaxy and cluster distributions, etc.) are sensitive to total neutrino mass sum (3 active + sterile)

Current upper bound from cosmology $\Sigma m_{\nu} < 0.23$ eV at 95% C.L. (Planck+WP+highL+BAO)

► Many model assumptions needed extract neutrino mass sum from observables.

Neutrino mass and cosmology Y.Y.Y. Wong, Ann. Rev. Nucl. Part. Sci.(2011) 61:69-98.

Neutrino Mass from Oscillation

- Absolute mass scale
 - ▷ cosmology and β-decay (so far only upper limits)
- How do we know neutrinos mass is non-zero?
 - Lower limits from oscillation experiments for two of three active neutrinos.
 - $\triangleright \ \Delta m^2_{\rm atm} \Rightarrow {\rm heaviest \ neutrino} \\ m \geq 0.04 \ {\rm eV}$

Currently the most sensitive way to study neutrino mass is to catch one in the act of oscillating...

Neutrino Flavor and the SM

In SM there are three flavors of neutrinos and each has a corresponding charged-lepton.

$$\left(egin{array}{c}
u_e \\
e \end{array}
ight) \left(egin{array}{c}
u_\mu \\
\mu \end{array}
ight) \left(egin{array}{c}
u_ au \\
 au \end{array}
ight)$$

Flavor change does not occur in SM interactions of leptons.

• Conservation of *lepton flavor number* also observed for charged-leptons $Br(\mu \rightarrow e\gamma) < 6 \times 10^{-13}$

Neutrino Oscillation and the SM

Neutrino oscillation is a mechanism for flavor change which requires that masses are not zero and not degenerate.

 \mathcal{V}_{c}

Discovery of neutrino oscillation was the first confirmed physics beyond the Standard Model (Nobel Prize 2002, Ray Davis and Masatoshi Koshiba).

Neutrino Oscillation

Mixing between 2 generations:

Weak interaction eigenstates $\begin{pmatrix}
\nu_{\alpha} \\
\nu_{\beta}
\end{pmatrix} = \begin{pmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{pmatrix}
\begin{pmatrix}
\nu_{i} \\
\nu_{j}
\end{pmatrix}$ Mass eigenstates

- Produce a neutrino in a pure flavor eigenstate (α), it is a mixture of mass eigenstates.
- Mass eigenstates evolve in time $\nu_i(t) = \nu_i(0) \cdot e^{-iE_i t}$.
- ► The relative phases of the mass states induce "flavor oscillation" as the state propagates over a time t (or distance L = ct).
- Probability of observing the state (β) at a later time t (or after propagating through path length L from the production point) is

Transition probability $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 L/E\right)$ θ is the mixing angle $\Delta m^2 = (m_i^2 - m_j^2)$ in eV² E is the neutrino energy in GeV L is the distance traveled in km

Transition Probability

$$heta$$
 is the mixing angle
 $\Delta m^2 = (m_i^2 - m_j^2)$ in eV²
 E is the neutrino energy in GeV
 L is the distance traveled in km

Flavor composition 'oscillates' between the two states as it propagates.

Three Flavor Oscillation

Weak
eigenstates
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
 Mass
eigenstates

Pontecorvo-Maki-Nakagawa-Sakata Mixing Matrix (PMNS),

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Oscillation Experiments measure 6 parameters.

- ► Three mixing angles θ_{12} , θ_{13} , θ_{23} & phase δ .
- ► Two independent mass differences: Δm^2_{23} , Δm^2_{12}

Third comes from constraint: $\Delta m^2_{23} + \Delta m^2_{12} + \Delta m^2_{31} \texttt{=} \texttt{0}$

Matter Effects

• Sensitive to the sign of Δm^2 .

The Story of ν Oscillations

Astrophysical sources: First early hints and discoveries.

Manmade Sources: Confirmation + precision measurements.

Reactors

- Point source <10 MeV $\overline{\nu}_e$.
- ► First neutrino detection (1956).

Accelerator

- Collimated beam (mainly ν_{μ})
- ► Energies 0.5-500 GeV.

Solar Neutrinos

What is the Sun's energy source???

- * Mid-1800's: Chemical process
 - Sun would burn out in a few thousand years.
- Late 1800's: Kelvin-Helmholtz propose gravitational collapse.
 - Energy supply for ${\sim}25$ million years...
- ► 1929 Atkinson and Houtermans propose fusion.

- p. 14/4

What do Neutrinos have to do with this?

 ν_e 's are a fusion by-product.

Detection of ν_e 's from the sun is definitive evidence for fusion.

Challenges of Solar Neutrino Detection

* Goal (mid-60's): devise experiment to detect solar neutrinos.

► Neutrino production rate predicted from Solar models (1960's J. Bahcall).

- Sun emits around 2 × 10³⁸ neutrinos per second !
 ... more than 40 billion neutrinos per second per cm² arrive at Earth.
- ▶ Most of the neutrinos have too little energy to detect ($pp \nu_e$ sub-MeV).
- Expected signal rate is very small (<1 interaction per day in a very large detector).</p>
- ▶ There are many sources of background (radioactive impurities, cosmic rays etc.)

Enter Ray Davis

Detector method based on the neutrino capture reaction: $u_e + \ ^{37}Cl \rightarrow \ ^{37}Ar + e^-$

Ray's Recipe:

- 1. Pour 100,000 gallons of (ultrapure) perchlorethylene (C_2Cl_4) in a huge (ultrapure) tank.
- 2. Bury tank 4,800 ft. deep in Homestake gold mine.
- 3. Wait 158 days.
- 4. Separate out the 53 ^{37}Ar atoms produced from the remaining 100,000 gallons of fluid.
- 5. Repeat every few months for \sim 20 years.

It worked ! (sort of...)

 $\frac{\Phi_{\nu_e}(meas.)}{\Phi_{\nu_e}(SSM)} = 0.34 \pm 0.06$

The Solar Neutrino Problem

1. We don't understand the sun (or any star).

2. We don't understand the neutrinos.

- New techniques agreed with Davis's results (Gallex and SuperKiokande).
 - ▷ SK active detection ($E_{\nu} > 5$ MeV)
 - $\nu_e e^- \rightarrow \nu_e e^-$
- Common feature of experiments: sensitive to ν_e 's only, (by design).

Neutrino image of the sun

► Neutrino oscillation hypothesis: v_e's convert to another flavor and "disappear" before reaching the earth.

Need a new definitive experiment: SNO (Sudbury Neutrino Observatory)

► Most Important Feature: Sensitive to ALL three $(\nu_e, \nu_\mu, \nu_\tau)$ types of neutrinos.

SNO Definitive Results

- 1000 tons of heavy water D₂O
 (deuterium is a weakly bound state of n & p)
- Turned on in 1999 in Sudbury nickel mine, 6800 ft underground.

(CC) $\nu_e + d \rightarrow p + p + e^-$ only ϕ_{ν_e} (NC) $\nu_x + d \rightarrow p + n + \nu_x$ $\phi_{\nu_e} + \phi_{\nu_\mu} + \phi_{\nu_\tau}$ (NC&CC) $\nu_x + e^- \rightarrow \nu_x + e^ \phi_{\nu_e} + \phi_{\nu_\mu} + \phi_{\nu_\tau}$

• Measured ν_e rate agrees with previous expts. (Davis was right!)

$$\frac{\phi_{\nu_e}}{\phi_{\nu_e} + \phi_{\nu_{\mu}} + \phi_{\nu_{\tau}}} = 0.340 \pm 0.038$$

► Measured total flux agrees with solar model prediction. (Bahcall was right!) Measured $\phi_{\nu_e} + \phi_{\nu_{\mu}} + \phi_{\nu_{\tau}} = (4.94 \pm 0.42) \times 10^6 cm^{-2} s^{-1}$ Theory $\phi_{TOTAL} = (5.69 \pm 0.91) \times 10^6 cm^{-2} s^{-1}$

Verdict: Neutrino flavor change!

Atmospheric Neutrinos

Expected flavor ratio $N(\nu_{\mu})/N(\nu_{e}) \sim 2$

Circa 1990 most experiments measured a ratio of ν_μ to ν_e that is 40% too low.

- Atmospheric neutrino anomaly "too few ν_{μ} "
 - $\triangleright\,$ Could be explained by ν_{μ} disappearance.

Atmospheric Neutrinos (cont'd)

- Oscillation Hypothesis \Rightarrow Path length dependent rate.
- ► Source provides variable path length (50km-12,700km) ⇒ Zenith angle dependence.

 Smoking gun for oscillation hypothesis: Super K measures zenith angle dependence.

$$\triangleright \ \nu_{\mu} \text{ deficit but no } \nu_{e} \text{ excess } \Rightarrow Mostly \ \nu_{\mu} \rightarrow \nu_{\tau}.$$

Accelerator ν Oscillation Experiments

Select the beam energy E and the pathlength L to tune for a particular signal.

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(1.27\Delta m^2 L/E\right)$$

Probe atmospheric signal region Need long-baseline

$$\Delta m^2 \approx 10^{-2} - 10^{-3} \ \mathrm{eV^2}$$

$$\frac{L}{E} \approx 10^3 - 10^2 (\mathrm{km/GeV}).$$

$$\Delta m^2$$
 =2.5 $imes 10^{-3}~{
m eV}^2$

- Set L = 1000 km
- Beam range should cover first oscillation dip.
 - ▷ Energies 1-10 GeV.

ν_{μ} Disappearance with a Long-baseline

K2K

- ► KEK beam to SuperKamiokande
- ► L=250km, $\langle E_{\nu} \rangle$ =1.3GeV
- ► Completed 2004 (9×10^{19} PoT).

- ► L=735 km, < E >= 3 GeV
- Completed 2012
 - $\triangleright~{\rm Neutrino}~{\rm mode}>10^{21}~{\rm PoT}$
 - $\triangleright~{\rm Antineutrino}~{\rm mode}~3.3\times10^{20}~{\rm PoT}$

Designing a LBL Experiment

Near Detector measures spectrum at L=0. Far Detector measures spectrum at L

"identical" detectors reduce systematic errors.

Which flavor ? ► Optimize detector to see the associated final state lepton.

Muon Neutrino Disappearance

Reconstruct $E_{\nu} = E_{\mu} + E_{HAD}$ and measure spectral distortion.

 ν_{μ} Survival probability $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(1.27\Delta m_{32}^2 \frac{L}{E}\right)$

Muon Neutrino Disappearance

Reconstruct $E_{\nu} = E_{\mu} + E_{HAD}$ and measure spectral distortion.

 ν_{μ} Survival probability $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(1.27 \Delta m_{32}^2 \frac{L}{E} \right)$

Muon Neutrino Disappearance

Reconstruct $E_{\nu} = E_{\mu} + E_{HAD}$ and measure spectral distortion.

 ν_{μ} Survival probability $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(1.27 \Delta m_{32}^2 \frac{L}{E}\right)$

MINOS Disappearance Oscillation Results

Atmospheric Oscillation Parameters

Reactor Disappearance Experiment

– p. 27/4

Reactor Disappearance Experiment (cont'd)

$$P_{\overline{\nu}_{\rm e}\to\overline{\nu}_{\rm e}} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{12}^2 L}{4E}\right)$$

Atmospheric
$$\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{eV}^2$$
.Solar $\Delta m_{12}^2 = 7.6 \times 10^{-5} \text{eV}^2$.L~2 kmL~60 kmShort-baselineLong-baseline

• KamLAND experiment: optimized for
$$\Delta m_{sol}^2$$
:

- Practical: Kamioka mine
 overburden 2700 m.w.e.
 (reduce backgrounds).
- ▷ 55 reactors within Japan. \rightarrow Mean flux weighted reactor distance ~180 km.

KamLAND Results

The Big Picture (Pre 2012): Mixing

The Big Picture: Masses

 \triangleright L=810 km, $\langle E_{\nu} \rangle$ =2GeV

Short-Baseline Reactor Experiments

Small mixing \Rightarrow need near detectors.

- ► Near (range ≈300m-550m) close to reactor to measure flux for normalization (reduce systematics).
- Far (range ≈ 1380m-1985m) near the first oscillation maximum to maximize sensitivity.(less affected by θ₁₂).

– p. 33/4

Daya Bay First Results (March 2012)

 Design allows comparison of Near site measurements (control of syst. uncertainties).

 $\sin^2 2\theta_{13} =$ 0.092±0.016(stat) ± 0.005(syst)

- ► 5.2σ (rate only)
- Spectral distortion consistent (not used in fit).

– p. 34/4

LBL Accelerator ν_e appearance

Common Design Features

- ► Large *fine-grained* Far and Near detectors: better optimized for ν_e identification.
- ► Neutrino detectors positioned off the beam axis to reduce backgrounds.

Why Off-axis Neutrino Beams?

 $u_{\mu} \rightarrow \nu_{e} \text{ appearance:}$

Small signal and large background/

• NC events with $\pi^{\circ} (\rightarrow 2\gamma)$.

• Beam ν_e contamination (from μ and K decay).

Off-axis design (E_{ν} depends on θ)

• π decay kinematics limit max. E_{ν} in beam as a function of off-axis angle θ

$$E_{\nu} = \frac{E_{\pi} (1 - \frac{m_{\mu}^2}{m_{\pi}^2})}{(1 + \gamma^2 \theta^2)}$$

Off-Axis Beam features

- Narrows spectrum (removes high-energy tail feed-down source of NC-π^o).
- Less beam ν_e contamination.
- Higher flux in the LE signal region.

 $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

► The <u>disadvantage/advantage</u> of ν_e appearance expts with long-baseline beams is that they are sensitive to three unknowns $(\theta_{13}, \delta, sign(\Delta m_{13}^2))$

$$P(\nu_{\mu} \rightarrow \nu_{e})_{vacuum} = \\ \sin^{2} \theta_{23} \sin^{2}(2\theta_{13}) \sin^{2} \Delta_{atm} \\ + \cos^{2} \theta_{23} \sin^{2}(2\theta_{12}) \sin^{2} \Delta_{\odot} \\ \mp J_{r} \sin \delta_{CP} \sin^{2} \Delta_{atm} \sin \Delta_{\odot} \\ + J_{r} \cos \delta_{CP} \sin \Delta_{atm} \cos \Delta_{atm} \sin \Delta_{\odot} \\ (- neutrinos, + antineutrinos) \\ J_{r} = \cos \theta_{13} \sin(2\theta_{13}) \sin(2\theta_{12}) \sin(2\theta_{23})$$

- dominant term $\approx \frac{1}{2} \sin^2(2\theta_{13})$ at osc. max.
- small for accelerator longbaseline L/E's
- sub-leading CP violating phase terms.

$$\Delta_{\odot} = 1.27 \Delta m_{12}^2 L/E$$
$$\Delta_{atm} = 1.27 \Delta m_{13}^2 L/E$$

- Sub-leading terms sensitive to δ_{CP} . (Different sign for ν and $\overline{\nu}$).
- ▶ Include matter effects \Rightarrow sensitive to sign Δm_{13}^2 and changes sign for ν vs. $\overline{\nu}$.

$\sin^2 2\theta_{13}$ Measurement Summary

Oscillations What's Next?

- ▶ Is CP symmetry violated in the neutrino sector? \rightarrow size of δ .
- Ordering of the masses \rightarrow is m_3 the heaviest or the lightest?
- ► Are there additional (sterile) neutrino states?
- ► Theory questions: pattern of masses and mixing?

Planning a next generation optimized for δ and hierarchy sensitivity.

▶ Includes very long baseline L \sim 1300 km beam Fermilab \rightarrow Sanford (SURF).

LBNE Snapshot

CP Violation Matters

Summary and Outlook

We are making progress towards understanding neutrino interactions and properties

- Neutrino have a long history of probing the standard model.
- ► Recent revolution understanding properties→ Discovery of mass and mixing
 - Mass splittings and all mixing angles known!

Exciting times for neutrino physics!

"What's most depressing is the realization that everything we believe will be disproved in a few years."

- Apologies for the many important topics not covered ($0\nu\beta\beta$, sterile neutrinos, SB neutrino oscillation anomalies, etc.)
- ► Many thanks to previous lecturers for slides (D. Schmitz, J. Morfin, G. Perdue, etc.)

Extra

LBNE LarTPC

LBNE Spectra

CKM vs. PMNS

Cosmological Mass measurements

Astropart. Phys. 35, 177 (2011)

Probe	$\frac{\text{Current}}{\sum m_{\nu} \text{ (eV)}}$	Forecast $\sum m_{\nu}$ (eV)	Key Systematics	Current Surveys	Future Surveys
CMB Primordial	1.3	0.6	Recombination	WMAP, Planck	None
CMB Primordial + Distance	0.58	0.35	Distance measure- ments	WMAP, Planck	None
Lensing of CMB	∞	0.2 - 0.05	NG of Secondary anisotropies	Planck, ACT [39], SPT [96]	EBEX 57, ACTPol, SPTPol, POLAR- BEAR 5, CMBPol
Galaxy Distribution	0.6	0.1	Nonlinearities, Bias	SDSS <u>58</u> , <u>59</u> , BOSS <u>82</u>]	DES 84], BigBOSS 81], DESpec 85], LSST 92], Subaru PFS 97], HET- DEX 35
Lensing of Galaxies	0.6	0.07	Baryons, NL, Photo- metric redshifts	CFHT-LS 23, COS- MOS 50	DES [84], Hy- per SuprimeCam, LSST [92], Euclid [88], WFIRST[100]
Lyman α	0.2	0.1	Bias, Metals, QSO continuum	SDSS, BOSS, Keck	BigBOSS[81], TMT[99], GMT[89]
21 cm	∞	0.1 - 0.006	Foregrounds, Astro- physical modeling	GBT [11], LOFAR [91], PAPER <u>53</u>], GMRT <u>86</u>]	MWA 93], SKA 95], FFTT 49]
Galaxy Clusters	0.3	0.1	Mass Function, Mass Calibration	SDSS, SPT, ACT, XMM [101] Chan- dra [83]	DES, eRosita [87], LSST
Core-Collapse Super- novae	∞	$\theta_{13} > 0.001^*$	Emergent ν spectra	SuperK [98], ICECube[90]	Noble Liquids, Gad- zooks [7]

Computing Oscillation Probabilities

 $P(\nu_{\mu} \to \nu_{e}) = |\langle \nu_{e} | \nu_{\mu}(t) \rangle|^{2}$

 $\begin{aligned} |\nu_e\rangle &= U_{e1} |\nu_1\rangle + U_{e2} |\nu_2\rangle + U_{e3} |\nu_3\rangle \\ |\nu_\mu(0)\rangle &= U_{\mu 1} |\nu_1\rangle + U_{\mu 2} |\nu_2\rangle + U_{e3} |\nu_3\rangle \\ |\nu_\mu(t)\rangle &= U_{\mu 1} \exp^{-iE_1 t} |\nu_1\rangle + U_{\mu 2} \exp^{-iE_2 t} |\nu_2\rangle + U_{e3} \exp^{-iE_3 t} |\nu_3\rangle \end{aligned}$

 ΔE for two different mass states in high-energy approximation p >> m

$$E_{i} = \sqrt{p^{2} + m_{i}^{2}} = p(1 + (\frac{m_{i}}{p})^{2})^{\frac{1}{2}} \approx p(1 + (\frac{1}{2})(\frac{m_{i}}{p})^{2}) \approx (E + (\frac{m_{i}^{2}}{2E})^{\frac{1}{2}}$$
$$\Delta E \approx \frac{m_{i}^{2} - m_{j}^{2}}{2E}$$

Write in terms of $\Delta m^2 = \left(m_i^2 - m_j^2\right)$ and path length $c = 1 \Rightarrow t = L$ General expression $P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\Sigma_{i>j} \Re \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*\right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E}\right) + 2\Sigma_{i>j} \Im \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*\right) \sin \left(\frac{\Delta m_{ij}^2 L}{2E}\right)$

Flavor Composition of Neutrino Mass States

