Lectures on Deep Inelastic Scattering

Voica Radescu* (DESY)

* Participant to CTEQ 2001 Summer School PhD from Pitt in 2006

• Part I:

- Introduction to DIS formalism
- Physics Results from DIS experiments
- Part II:
 - impact of DIS measurements
 - Relevance of DIS to LHC physics
 - Oulook

Today's Lecture

Lectures will present state of the art in the field blended in with new experimental results*

- Motivation
- A leap into history
- Quark Parton Model
- Parton Distribution Functions (PDFs)
- QCD add on features
- Selected Experimental measurements

* Disclaimer: more coverage of H1, NuTeV and ATLAS is given due to my biases...

Motivation

- Deep inelastic scattering is the ideal process for the determination of the quark and gluon distributions in the proton.
 - Studies of the proton substructure of the nucleon are of great interest for the development of strong interaction theory
- With high energy and luminosity, the LHC search range will be extended to high masses, up to 5 TeV in pair production. At correspondingly large momentum the constituents of proton are unknown to a considerable extent.
 - Accurate knowledge of constituents of protons also a necessary input for new physics searches and studies at the Large Hadron Collider

Introduction to Deep Inelastic Scattering (DIS)

 Rutherford's gold foil experiment 1909 (performed by Geiger and Marsden)

Geiger and Rutherford

Rutherford's gold foil experiment set the scene for a century of ever-deeper and more precise resolution of the constituents of the atom, the nucleus and the nucleon.

→ Ideas for detecting quarks were formulated:

To probe the interiors of target, pointlike and easily produced particle needed to be used.

Probing the Proton Structure

• Proton can be probed via elementary particles as:

- neutrinos (fixed target experiments) interact only weakly
- o electrons (fixed target and collider experiments) interact electroweakly

e,ν,μ x, Q²

• Deep Inelastic Scattering (DIS) is the cleanest probe to study the substructure of nucleon

o scattering of a lepton off the nucleon involving a large momentum transfer and resulting into a hadronic shower and a lepton

• Kinematic Lorentz Invariant Variables:

o virtuality of exchanged boson

$$Q^2 = -q^2 = -(k - k')^2$$

 proton momentum fraction of the scattered quark (Bjorken scaling variable)

$$x = \frac{Q^2}{2p \cdot q}$$

o inelasticity parameter:

$$y = \frac{p \cdot q}{p \cdot k}$$

• invariant centre of mass energy:

$$s = (k+p)^2 = \frac{Q^2}{xy}$$

• Invariant centre of mass energy of the virtual boson-proton system)

$$W^2 = (P+q)^2 = m_p^2 - Q^2 + 2P \cdot q = ys - Q^2 + m_p^2(1-y).$$
 Voica Radescu | DESY () CTEQ 2013 DIS 5

DIS Cross Sections

• Factorisable nature of interaction: Inclusive scattering cross section is a product of leptonic and hadronic tensors times propagator characteristic of the exchanged particle:

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4x} \sum_j \eta_j L_j^{\mu\nu} W_j^{\mu\nu}$$

For NC: j= γ , Z, γ Z
For CC: j=W+, W-

Leptonic tensor: related to the coupling of the lepton with the exchanged boson

- contains the electromagnetic or the weak couplings
- can be calculated exactly in the standard electroweak $U(1) \times SU(2)$ theory. •

Hadronic tensor: related to the interaction of the exchanged boson with proton

can't be calculated, but only be reduced to a sum of structure functions:

• can't be calculated, but only be reduced to a sum of structure functions:

$$\begin{aligned}
& \sim m_{lepton} \\
W^{\alpha\beta} &= -g^{\alpha\beta}W_1 + \frac{p^{\alpha}p^{\beta}}{M^2}W_2 - \frac{i\epsilon^{\alpha\beta\gamma\delta}p_{\gamma}q_{\delta}}{2M^2}W_3 + \underbrace{\frac{q^{\alpha}q^{\beta}}{M^2}W_4 + \frac{p^{\alpha}q^{\beta} + p^{\beta}q^{\alpha}}{M^2}W_5 + \frac{i(p^{\alpha}q^{\beta} - p^{\beta}q^{\alpha})}{2M^2}W_6 \\
& \overline{\frac{d^2\sigma}{dxdQ^2}} = A^i \left\{ (1 - y - \frac{x^2y^2M^2}{Q^2})F_2^i + y^2xF_1^i + \underbrace{(y^2 - \frac{y^2}{2})xF_3^i}_{e^2} \right\}_{escu| DESY} A^i: \text{ process dependent} \\
& \text{ be calculated, but only be reduced to a sum of structure functions: $\sim m_{lepton}$$$

Scaling of the structure functions

Structure functions can be extracted experimentally by looking at x,y,Q² dependence of the cross-section

• Experimental observation of scaling behaviour of F₂ is first evidence for a partonic sub-structure in the nucleon:

Scaling refers to the dependence of the structure functions on a single dimensionless variable x: Bjorken scaling

Once able to look into nucleon, can look into the properties of those partons...

Quark Parton Model (QPM)

In Quark Parton Model:

inelastic scattering with nucleon is viewed as elastic scattering between lepton and a pointlike constituent of the target – partons (non-interacting) – explicitly assumed to be spin-1/2 particles

Each parton carries the fraction x with a probability
$$q(x)$$

 q
 q
 $(1-x)r$
 $\left(\frac{d\sigma}{dxdQ^2}\right)_{ep\to eX} = \sum_i \int dx e_i^2 q_i(x) \left(\frac{d\sigma}{dxdQ^2}\right)_{eq_i\to eq_i}$

Bjorken-x has a meaning of momentum fraction carried by the struck quark:

The elastic scattering cross section for spin $\frac{1}{2}$:

Considering probability distribution for the quark to have momentum fraction x, xq(x), **Callan-Gross relation** $F_2(x) = \sum_{q} e_q^2 x q(x), \qquad F_L(x) = 0.$

 $F_2(x) = 2xF_1(x)$

Verification of QPM: fractional electric charge

Using different probes (e, nu) in DIS processes: can probe electric charge of the partons proton: uud
 $F_2(x) = \sum_i e_i^2 x [q_i(x) + \bar{q}_i(x)]$

Neutrinos:

- interact only weakly
- left handed particles

9

$$\begin{aligned} F_2^{ep}(x) &= x[e_u^2(u+\bar{u})+e_d^2(d+\bar{d})] &F_2^{\nu p}(x) &= 2x[d+\bar{u}] \\ F_2^{en}(x) &= x[e_u^2(d+\bar{d})+e_d^2(u+\bar{u})] &F_2^{\nu n}(x) &= 2x[u+\bar{d}] \\ F_2^{eN}(x) &= \frac{1}{2}(F_2^{ep}+F_2^{en}) &F_2^{\nu N}(x) &= \frac{1}{2}(F_2^{\nu p}+F_2^{\nu n}) \\ &= x\frac{e_u^2+e_d^2}{2}[u+\bar{u}+d+\bar{d}] &F_2^{\nu N}(x) &= \frac{1}{2}(F_2^{\nu p}+F_2^{\nu n}) \\ &= x[u+\bar{u}+d+\bar{d}] \end{aligned}$$

 $\frac{F_2^{eN}}{F_2^{\nu N}} = \frac{1}{2}(e_u^2 + e_d^2) = \frac{5}{18} = 0.28 \quad \longleftarrow \quad \frac{\text{SLAC}eN}{\text{GGM}\nu N} = 0.29 \pm 0.05$ Voica Radescul DESY (*) CTEQ 2013 DIS

Verification of QPM: fractional electric charge

Verification of QPM: valence, sea quarks

 ◆ Partons: valence and sea u = u_{val} + u_{sea}; u_{sea} = ū d = d_{val} + d_{sea}; d_{sea} = d̄ = ū
 ▶ Gross-LLewellyn-Smith sum rule: counting the net number of quarks in the nucleons

 $\begin{array}{rcl} xF_{3}^{\nu p} & = & 2x(d-\bar{d}) = 2xd_{v} \\ xF_{3}^{\nu n} & = & 2x(u-\bar{u}) = 2xu_{v} \end{array} \qquad \qquad \int_{0}^{1} xF_{3}^{\nu N}\frac{dx}{x} = \int_{0}^{1} (u_{v}+d_{v})dx$

QPM predicts that GLS=3; experimental findings agree within errors (Gargamelle).

▶ The observation of jet production was a major success of the Quark Parton Model approach:

The lowest order reaction leads to two jets of particles which are back-to-back in azimuth as predicted for spin-½ quarks

Some of the puzzles of the QPM:

 If the proton would be solely constituted of charged quarks, it was expected that

$$\int_0^1 dx \; x \sum_i q_i(x) = 1$$

Experimentally was found that half of momentum of proton is NOT carried by quarks

♦ Gargamelle: 0.49±0.07

- Initial phase of multi-hadron production is similar to muon pair production through e⁺e⁻ annhilation:
 - Measures directly the sum of the squares of the quarks charges (number of quark flavours)

$$R_{\gamma} = \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \sum_q e_q^2 = \frac{11}{9}$$

 \diamond But actual experimental result is ~ 11/3

→ Indication that colour is more than just a quantum number:

♦ discovery of the gluons at PETRA: 3 jet events

3 jets discovered at DESY in 1979

Parton Distribution Functions (PDFs)

The proton has a dynamic structure determined by the resolving power of the process

QCD features

Quantum Chromo Dynamics is theory of strong interactions among quarks and gluons

- The charge of the strong interaction is a new quantum number called colour with 3 d.o.f (RGB)
- The gauge bosons of the strong interactions are 8 massless gluons with no electric nor weak charge, gluons carry colour charges and are therefore able to self-interact
- The strong interaction is characterised by a strong coupling parameter:

Characteristics:

■ Quarks are bound inside protons, strongly coupled, cannot measure directly their distributions: confinement (strength at large distance → at low Q)

■ At large scattering scales the coupling of strong force decreases and quarks become quasi-free partons: asymptotic freedom (weakness at short distance → at large Q)

 interactions of quarks and gluons at large scales can be calculated perturbatively in running strong coupling.

Renormalisation and running coupling

- Calculation of a scattering cross section in pQCD reduces to summing over the amplitudes of all possible intermediate states:
 - 4-momentum conserved at each vertex, however inclusion of loop diagram leads to divergences

ලි 0.24 ^හ 0.22

0.2

0.18

0.16

0.14

0.12

0.1

Renormalisation method: introducing a scale for which UV divergence is removed

However any observable (R) should be free of such scale:

$$\mu rac{d}{d\mu^2} R(rac{Q^2}{\mu^2},lpha) = \left(\mu^2 rac{\partial}{\partial \mu^2} + \mu^2 rac{\partial lpha}{\partial \mu^2} rac{\partial}{\partial lpha}
ight) R = 0$$

This way we obtain the equation for running alpha:

$$t = \log\left(rac{Q^2}{\mu^2}
ight)$$
 and $\ eta(lpha) = \mu^2 rac{\partial lpha}{\partial \mu^2}$

Perturbation expansion of beta function:

$$\beta(\alpha_s) = -b\alpha_s^2 \left(1 + b'\alpha_s + b''\alpha_s^2 + ...\right)$$

Running coupling in one loop:

 12π

$$\frac{12\pi}{(33-2n_f)\log} + \alpha_s = \frac{12\pi}{(33-2n_f)\log}$$

3-loops

m

0.08 ATLAS Preliminary

10

ATLAS 2010 N3/2

DØ inclusive iet

H1 inclusive iet **ZEUS** inclusive iet

PDG 2012 world average $\alpha_{\rm s}({\rm M_{-}}) = 0.1184 \pm 0.0007$

DØ R

 10^{2}

Factorisation theorem

Perturbative calculations are performed in context of the factorisation theorem:

o extended to the case of heavy quarks [Collins 1998]

Factorisation Theorem: short and long distances processes are separable \rightarrow introduce μ_F

- soft part: PDFs parametrised and determined from data
- hard part: process dependent calculable

$$F_2(x,Q^2) \sim \sum_a f_a(x,\mu_f) \otimes \widehat{F}_2^a(x,\frac{Q}{\mu_f})$$

- > Physical Structure Function is INDEPENDENT of choice of the scale:
 - \diamond both, pdf's and the short-dist. coefficient depend on μf (long distance physics)
 - \diamond There is also short distance physics: we can insert perturbative corrections to loops μr

a measurable cross section d
$$\sigma$$
 has to be independent of μ_r and μ_f
$$\mu_{r,f} \frac{d\sigma}{d\mu_{r,f}} = \frac{d\sigma}{d\ln\mu_{r,f}} = 0 \implies \text{renormalization} \text{group equations}$$

Determination of QCD Evolution equations

 Ilustration of what could happen before the quark is struck

We already stated that physical quantity should Be independent of choice of the factorisation scale:

QCD Evolution equations

Parton momentum distributions change with the scale of the probe:

- Q²=p²-E²~10 GeV² is typical scale for low energy experiments
- ▶ Q²=p²-E²~10000 GeV² is the scale that we are now starting to probe at the LHC

Total momentum carried by the valence quarks is ~ 0.5 => the rest is the gluon and sea quarks.

PDF parametrisation

PDFs are parametrised at a starting scake and QCD evolution evolve them to any scale!

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x+E_g x^2+F_g \sqrt{x}+...) \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x+E_{u_v} x^2+F_{u_v} \sqrt{x}+...) \\ xd_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+D_{u_v} x+E_{u_v} x^2+F_{u_v} \sqrt{x}+...) \\ x\bar{u}(x) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}} (1+D_{\bar{u}} x+E_{\bar{u}} x^2+F_{\bar{u}} \sqrt{x}+...) \\ x\bar{d}(x) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}} (1+D_{\bar{d}} x+E_{\bar{d}} x^2+F_{\bar{d}} \sqrt{x}+...) \end{aligned}$$

There are many studies done to assess biases due to parametrisation ansatz:

- Neural network PDF: very flexible parametrisation
- Use of Chebyshev Polynomial
 - These flexible parametrisation require though Regularisation Methods to smooth the PDFs

- B>0 for valence like shape
- B<0 for sea
- $C \rightarrow high x behaviour$

D, E, F \rightarrow interpolate between low and high x

Schematics of PDF extraction

PDFs are extracted from QCD fits to double differential cross section data:

- o Parametrise PDFs at a starting scale by smooth functions with sufficient parameters;
- o Evolve PDFs to other scales by the evolution equations (DGLAP)
- Compute cross sections for DIS (or other processes) at NLO (NNLO)
- Calculate χ^2 measure of agreement between data and theory model
- \circ Obtain the best estimate of the PDFs by varying the free parameters to minimize χ^2

- For tomorrow..

HERAFitter Framework provides means to the experimentalist to assess the impact of measurements www.herafitter.org

Experimental Data on the Proton Structure

Experimental Data on the Proton Structure

HERA Kinematic plane

Voica Radescu | DESY 🙀 | CTEQ 2013 DIS 23

Detector and Kinematics at HERA: NC and CC DIS

o Neutral Current event sample in H1 detector

• Determination of the Event Kinematics:

 \circ using lepton information (E_e', θ_e)

• using hadronic final state particles

• using both lepton and hadronic final state variables θ_e , γ_h :

Redundant reconstruction of the kinematics allows extension of kinematic coverage, extra checks of systematic uncertainties.

Charged Current event sample in ZEUS detector

Electro-Weak Unification

Rise of F₂ at low x seen at HERA

Expectations on the density of partons before HERA.... And after HERA (high energy ep)

Before the HERA measurements most of the predictions for low-x were not rising! 1997 data ~30pb-1 3 **ب** F^e 1.6 $0^2 = 15 \text{ GeV}^2$ $Q^2 = 15 \text{ GeV}^2$ 2.5 1.4 DO 84 Seequarks 1.2 H1 96/97 2 EHLQ 85 ZEUS 96/97 NMC, BCDMS, E665 1 KMRS 90 CTEQ6D 1.5 0.8 **GRV 91** HERA: 2-3% precision A NMC 0.6 BCDMS Valenzquarks 0.4 Fixed target: 0.5 1-2% precision 0.2 0 0 -3 -1 -2 10 10 10 10⁻³ 10⁻² 10 10^{-1} 10 HERA discovered high density of matter! х x Voica Radescu | DESY 🔅 | CTEQ 2013 DIS 27

Scaling violations from F₂ at HERA (ep)

Polarisation effects in CC and NC

- SM predicts that CC cross section vanishes for right-handed electrons and left-handed positrons.
- SM predicts a difference in the NC cross section for leptons with different helicity states arising from the chiral structure of the neutral electroweak exchange

Measurements of Asymmetries from HERA

- Explore polarisation asymmetry to extract $F_2^{\gamma Z}$
- Explore charge asymmetry to extract xF₃^{YZ} (improved measurement from HERA I+II)

$$\tilde{F}_2^{\pm} \approx F_2 - (v_e \pm \boldsymbol{P_e} a_e) \kappa \frac{Q^2}{Q^2 + M_Z^2} F_2^{\gamma Z}$$

$$\sigma_r^{\pm} = \tilde{F}_2^{\pm} \mp \frac{1 - (1 - y)^2}{1 + (1 + y)^2} x \tilde{F}_3 - \frac{y^2}{1 + (1 - y)^2} \tilde{F}_L$$

The shape of the distribution reflects their parton sensitivity

Summary Lecture I

- Today have presented the basis of DIS formalism:
 - **Kinematic variables to describe the process**
 - **Differential Cross Section in terms of Structure Functions for different processes**
 - Relation of Structure Functions to PDFs (factorisation theorem)
- Some Milestones of Experimental Results:
 - Discovery of gluon
 - Electroweak Unification

- Tomorrow:
 - Will continue with more Experimental results
 - Applicability of DIS measurements: determination of PDFs
 - ightarrow importance of precision measurements and what does it involves
 - From Low x to High x
 - Relating DIS to LHC
 - ♦ Most recent data sensitive to PDFs
 - Outlook

HERAFitter QCD platform

Heritage of HERA transferred to LHC:

Open Source QCD Framework freely available at https://www.herafitter.org

DIS Cross Sections

• Factorisable nature of interaction: Inclusive scattering cross section is a product of leptonic and hadronic tensors times propagator characteristic of the exchanged particle:

Leptonic tensor: related to the coupling of the lepton with the exchanged boson

- contains the electromagnetic or the weak couplings
- can be calculated exactly in the standard electroweak $U(1) \times SU(2)$ theory. •

Hadronic tensor: related to the interaction of the exchanged boson with proton

can't be calculated, but only be reduced to a sum of structure functions:

• Can't be calculated, but only be reduced to a sum of structure functions:
$$\sim_{\text{m}_{lepton}} W^{\alpha\beta} = -g^{\alpha\beta}W_1 + \frac{p^{\alpha}p^{\beta}}{M^2}W_2 - \frac{i\epsilon^{\alpha\beta\gamma\delta}p_{\gamma}q_{\delta}}{2M^2}W_3 + \frac{q^{\alpha}q^{\beta}}{M^2}W_4 + \frac{p^{\alpha}q^{\beta}+p^{\beta}q^{\alpha}}{M^2}W_5 + \frac{i(p^{\alpha}q^{\beta}-p^{\beta}q^{\alpha})}{2M^2}W_6$$

$$\frac{d^2\sigma}{dxdQ^2} = A^i \left\{ (1 - y - \frac{x^2y^2M^2}{Q^2})F_2^i + y^2xF_1^i \mp (y - \frac{y^2}{2})xF_3^i \right\} \xrightarrow{\text{Ai: process dependent}}_{\text{escul DESY}} A^i: \text{ process dependent}$$

The First Measurement of Parity Violating SF $F_2^{\gamma Z}(x,Q^2)$

Voica Radescu | DESY 🙀 | CTEQ 2013 DIS 34

Structure Function $xF_3(x,Q^2)$

- charge asymmetry of unpolarised e±p NC cross sections

 \rightarrow mostly due to γZ interference

 $xF_3^{\gamma Z} = -x\tilde{F}_3 \cdot (Q^2 + M_Z^2)/(a_e \kappa Q^2)$

