Vector Boson and Direct Photon Production

Jianwei Qiu Brookhaven National Laboratory

2014 CTEQ Summer School on QCD Analysis and Phenomenology Peking University (PKU), Beijing, China, July 8 – 18, 2014

Take-home messages from lecture one

X-section with identified hadron(s), such as DIS, Drell-Yan, is NOT perturbatively calculable

QCD factorization is necessary, but, is an approximation!

- ♦ Collinear factorization for x-section with ONE large scale
- **TMD** factorization for x-section with TWO different scales
- □ Drell-Yan x-section of inclusive massive vector boson production is factorizable for leading power contribution

Theory and experiment are consistent for inclusive massive vector boson production, including
Resummation needed,

and works

$$\sigma^{\text{total}}(Q = M_V), \ \frac{d\sigma}{dy}, \ \frac{d\sigma}{dydq_T^2}, \ \frac{d\sigma}{dQ^2}, \ \frac{d\sigma}{dydQ^2}, \ \frac{d\sigma}{dydQ^2}dq_T^2$$

□ Excellent probe for PDFs, hadron structure, ...

Outline of the two lectures

□ Lecture one:

- ♦ Basics of vector bosons
- Orell-Yan like production process
- ♦ Cross section with a single hard scale precision
- \diamond Cross section with two different scales resummation

□ Lecture two:

- Photon production at high pT direct vs fragmentation
- \diamond Isolation cut the need and its complication
- Photons from fixed target to collider energies
- Multi-boson associated production at collider energies

Why photons?

□ Photon is a EM probe:

It can be produced at any stage of the collision It does not interact strongly once produced

Good probe of short-distance strong interaction:

Isolated or "direct" photon is produced at a distance $1/p_T \le fm$ "snap shot" of what happened at the distance scale $1/p_T$ Key signal, as well as background of Higgs production: $H^0 \rightarrow \gamma + \gamma$

□ Photon can tell the full history of heavy ion collision:

Theory behind the high p_T photon

□ Production mechanism – leading power factorization:

$$\rightarrow \bigcap_{n} \bigoplus_{m} \bigoplus$$

□ Predictive power:

 \diamond Short-distance part is Infrared-Safe, and calculable

 \diamond Long-distance part at the leading power is Universal – PDFs, FFs

□ Factorization and renormalization scale dependence:

- \diamond NLO is necessary
- \Box Power correction could be important at low p_T

Direct photon is sensitive to gluon

□ Sensitive to gluon at the leading order – hadronic collision:

♦ Compton dominates in pp collision:

 $f_{g/p}(x,\mu^2) \gg f_{\bar{q}/p}(x,\mu^2)$ for all x

Direct photon production could be a good probe of gluon distribution

Complication from high orders

□ Final-state collinear singularity:

$$\begin{array}{c|c} & & & & & & \\ \hline p_{\gamma} & & & & \\ \hline p_{5} & & & & \\ \hline p_{5} & & & & \\ \hline p_{6} & & & \\ p_{q \rightarrow \gamma}^{(0)}(z) = \frac{1}{2\pi} \mathcal{P}_{q \rightarrow \gamma}^{(0)}(z) \frac{1}{s_{\gamma q}} \overline{\sum} |M(qg \rightarrow qg)|^{2} \\ & & & \\ \mathcal{P}_{q \rightarrow \gamma}^{(0)}(z) = \frac{1 + (1 - z)^{2}}{z} \\ & & & \\ s_{\gamma q} = (p_{\gamma} + p_{5})^{2} \xrightarrow{z} 0 \quad \text{ when } p_{\gamma} \parallel p_{5} \end{array}$$

An internal quark line goes on-shell signaling long-distance physics

□ Fragmentation contribution:

$$\frac{d\sigma_{AB\to\gamma}^{\rm Frag}}{dydp_T^2} = \sum_{abc} \int \frac{dz}{z^2} D_{c\to\gamma}(z,\mu) \int dx f_{a/A}(x,\mu) \int dx' f_{b/B}(x',\mu) \frac{d\hat{\sigma}_{ab\to c}^{\rm Frag}}{dydp_T^2}$$

Photon fragmentation functions – inhomogeneous evolution:

$$\frac{\partial D_{c \to \gamma}(z, \mu)}{\partial \log(\mu)} = \underbrace{\frac{\alpha_{em}}{2\pi} \mathcal{P}_{c \to \gamma}(z)}_{a = q\bar{q}g} \frac{\alpha_s}{2\pi} P_{ac}(z) \otimes D_{a \to \gamma}(z, \mu)$$

Size of fragmentation

Campbell, CTEQ SS2013

□ Inclusive direct photon:

Production at NLO – available, e.g., in MCFM and JETPHOX (shown here)
 Fragmentation contribution is huge for inclusive production:

 $\sigma^{\text{Frag}} / \sigma^{\text{Total}} > 50\%$ at pT=20 GeV @ LHC (role of FF!)

Complication from the measurement

\Box Separation the signal photon from $\pi^0 \rightarrow \gamma \gamma$:

 \diamond When $p_{\pi 0}$ increases, the opening angle $\theta_{\gamma\gamma}$ decreases

 \diamond Two photons could be misidentified as one photon at high p_T

□ Isolation cut – algorithms (like jet):

♦ Cone algorithm – reduction of fragmentation contribution

Require that there is less then 1 GeV hadronic transverse energy in a cone of radius (CDF): $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \sim 0.7$

Complication from the measurement

\Box Separation the signal photon from $\pi^0 \rightarrow \gamma\gamma$:

 \diamond When $p_{\pi 0}$ increases, the opening angle $\theta_{\gamma\gamma}$ decreases

 \diamond Two photons could be misidentified as one photon at high \mathbf{p}_{T}

□ Isolation cut – algorithms:

Needed for IR safety

Cone algorithm – reduction of fragmentation contribution

Require that there is less then 1 GeV hadronic transverse energy in a cone of radius (CDF): $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \sim 0.7$

Complication from the measurement

\Box Separation the signal photon from $\pi^0 \rightarrow \gamma\gamma$:

- \diamond When $p_{\pi 0}$ increases, the opening angle $\theta_{\gamma\gamma}$ decreases
- \diamond Two photons could be misidentified as one photon at high p_T

□ Isolation cut – algorithms:

♦ Cone algorithm – reduction of fragmentation contribution

Require that there is less then 1 GeV hadronic transverse energy in a cone of radius (CDF): $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \sim 0.7$

♦ Modified cone algorithm – NO fragmentation contribution

 $\sum_{R_{j\gamma} \in R_0} E_T(\text{had}) < \epsilon_h p_T^{\gamma} \left(\frac{1 - \cos R_{j\gamma}}{1 - \cos R_0} \right) \quad \Leftrightarrow \text{Parton is softer as it closer to photon} \\ \Leftrightarrow \text{No contribution at CO singularity}$

Hard to implement experimentally (detector resolution)

S. Frixione, 1998

Size of fragmentation

Campbell, CTEQ SS2013

Isolated direct photon:

Isolation removes the most of fragmentation contribution! (down to 10%)
 About 75% of production rate is from gluon initiated subprocesses
 Potentially, a useful probe of gluon PDF

Role of gluon in pp collision

pp vs pp:

♦ Dominant role of the gluon in pp collision!

Even more dominance in the forward region!

Direct photon covers a wide range of x and Q²

Photon energy vs gluon momentum fraction x:

Ichou and D'Enterria, arXiv:1005.4529

Direct photon data

□ Fixed target energies $\sqrt{s} = 20 - 40$ GeV:

 \Rightarrow With p_T = 3-10 GeV, data have high x_T = $\frac{2p_T}{\sqrt{s}}$

Challenge for NLO theory to fit data – wrong shape!
 Collider energies:

 \Rightarrow pp at ISR with $\sqrt{s} = 44 - 62 \text{ GeV}$

- \Rightarrow pp at CERN and Fermilab with $\sqrt{s} = 540 1960 \text{ GeV}$
- \Rightarrow pp at RHIC with $\sqrt{s} = 200 500 \text{ GeV}$, dA and AA as well

 \Rightarrow pp at LHC with $\sqrt{s} = 7 - 14 \,\,\mathrm{TeV}$, and PbPb as well

Data sources:

♦ Data review by W. Vogelsang and M.R. Whalley,

J. Phys. G23, Suppl. 7A, A1 (1997)

Online database at http://durpdg.dur.ac.uk/HEPDATA

Theory vs experimental data

Tevatron data:

Agreement looks good when plotted on a logarithmic scale
 QCD description of direct photon production works

Compare with data from different expt's

CTEQ global analysis:

CTEQ Huston et al.

Neither PDFs nor photon FFs can significantly improve the shape
 Direct photon data were excluded from most global fits

Experiments with both pp and p\overline{p}

 \diamond Theory curves are below the data

♦ Rapidity curves are flatter

Role of gluon distribution?

UA6: $\overline{p}p - pp$ both pp and $\overline{p}p$ at $\sqrt{s} = 24.3$ GeV

♦ NO gluon contribution to the difference!

♦ Theory matches the data better – role of gluon?

Theory works well at RHIC energy

PHENIX

STAR

Same excess seen in π^0 production

But, works at RHIC energy

How about at the LHC?

 \diamond Shape in x_T – within the PDF uncertainty?

Rapidity dependence at the LHC

ATLAS:

 \diamond Data seems to be lower than theory at central η^{γ} and small E_T^{γ}

Overall consistency is better at collider energies!

Role of direct photon in PDF fits

□ Impact to NNPDF:

- Show slight improvement in gluon uncertainty
- Potential for improvement with more data from the LHC (gluon dominance)
- ♦ Some caveats:

Only at NLO – NNLO becoming the standard, nonperturbative FFs, ...

Where do we stand?

❑ Agreement between theory and data improves with increasing energy and is excellent at √s = 200 GeV

□ Situation with fixed target direct photon data is confusing:

- ♦ Disagreement between experiments
- A reassessment of systematic errors on the existing fixed target photon experiments might help resolve the discrepancies

We need an improved method of calculating single particle inclusive cross sections in the fixed target energy
 Threshold resummation helps

□ All experiments see an excess of data over theory at fixed target energies, but, less than theory at low pT at the LHC

More data from the LHC should help (the gluon dominance)!

Di-photon production

\Box Principle background to Higgs production channel $H^0 \rightarrow \gamma \gamma$:

Although the background is subtracted with a fitting procedure, it is also important to have some control of this process ab initio

Experimentally,

Significant contamination from the production of jets, or photon +jet, where jets are mis-identified as photons

Jet production rate is so much higher photon, care is needed even with mis-identification rate as small as 10⁻⁴!

□ Theoretically,

Implementation of isolation cut with two photons

Back-to-back kinematics – angular distribution – TMD factorization?

Di-photon production

□ High order corrections:

- ♦ NLO corrections included in DIPHOX and MCFM
- ♦ A particular class of NNLO contributions is separately gaugeinvariant, and, numerically important at the LHC – more gluons

Contribute at $\mathcal{O}(\alpha_s^2)$ to the x-section NO tree-level $gg \to \gamma\gamma$

N³LO correction with NLO technology

- Contributes approximately 15-25% of the NLO total, depending on exact choice of photon cuts, scale choice, etc.
- TMD factorization vs collinear factorization?
 Qiu et al. PRL 2011

 $\frac{d\sigma}{d^4 q_{\gamma\gamma} d\Omega_{\gamma\gamma}} \qquad \text{When } q_{T\gamma\gamma} \ll \sqrt{q_{\gamma\gamma}^2} \text{ , or imposing photon pT cut}$ $\text{Linear polarized gluon impacts } \Omega_{\gamma\gamma} \text{ distribution}$

NNLO results

Full NNLO calculation performed in the "Frixione" scheme, i.e. no need for fragmentation contributions

Catani et al (2012)

Better description of kinematic regions that are poorly described or inaccessible at NLO, e.g., azimuthal angle between photons

- Even better description would require either higher orders or inclusion in parton shower
 - \rightarrow not yet feasible.

Photon + jet angular distribution

QCD Compton and annihilation subprocess:

$$\frac{d\sigma}{d\hat{t}} \sim (1 - \cos(\theta^*))^{-1} \text{ as } \cos(\theta^*) \to 1$$

□ Other QCD subprocess, $qq \rightarrow qq, qg \rightarrow qg, gg \rightarrow gg$, etc. more relevant to jet+jet angular distribution:

$$\frac{d\sigma}{d\hat{t}} \sim (1 - \cos(\theta^*))^{-2}$$

as $\cos(\theta^*) \to 1$

□ Prediction:

Photon-jet angular distribution should be flatter than that observed in jet-jet final states

$$\cos(\theta^*) = \tanh\left(\frac{\eta_{\gamma} - \eta_{jet}}{2}\right)$$

Photon + jet angular distribution

QCD Compton and annihilation subprocess:

$$\frac{d\sigma}{d\hat{t}} \sim (1 - \cos(\theta^*))^{-1} \text{ as } \cos(\theta^*) \to 1$$

□ Other QCD subprocess, $qq \rightarrow qq, qg \rightarrow qg, gg \rightarrow gg$, etc. more relevant to jet+jet angular distribution:

$$\frac{d\sigma}{d\hat{t}} \sim (1 - \cos(\theta^*))^{-2}$$

as $\cos(\theta^*) \to 1$

Prediction:

Photon-jet angular distribution should be flatter than that observed in jet-jet final states

$$\cos(\theta^*) = \tanh\left(\frac{\eta_{\gamma} - \eta_{jet}}{2}\right)$$

W-boson + jets

Di-boson hadronic production

Campbell, CTEQ SS2013

- Triple gauge coupling present for all processes except Z γ
- Processes involving photons dependent on photon pT (and rapidity) cut, strongly
- NLO corrections known analytically, included in MCFM, VBFNLO (also POWHEG NLO MC)

Two bosons with single-resonant

W+photon – Radiation Zero

1

Campbell, CTEQ SS2013

□ W+photon amplitude:

$$\mathcal{M}_{\bar{u}(p_1)+d(p_2)\to W^++\gamma(p_3)} \propto \left(Q_u + Q_d \frac{p_1 \cdot p_3}{p_2 \cdot p_3}\right)$$

In c.m. frame: $p_2 \cdot p_3 \propto (1 + \cos \theta^*)$ $p_1 \cdot p_3 \propto (1 - \cos \theta^*)$

$$\mathcal{M}_{\bar{u}(p_1)+d(p_2)\to W^++\gamma(p_3)} \propto Q_u(1+\cos\theta^*) + Q_d(1-\cos\theta^*)$$

Amplitude vanishes if $\cos \theta^* = \frac{Q_u + Q_d}{Q_d - Q_u} = -\frac{1}{3}$ (Independent of photon energy)

"Radiation amplitude zero" (RAZ):

General feature of photon in multi-boson processes

- ♦ Result of interference between diagrams
- ♦ Corresponding photon rapidity: $y_{\gamma}^* = \frac{1}{2} \ln \left(\frac{1 + \cos \theta^*}{1 \cos \theta^*} \right) \approx -0.35$
- ♦ Boost invariant rapidity difference: $\Delta y^* = y^*_{\gamma} y^*_W$

In c.m. frame:
$$y_W^{\star} \approx \frac{1}{2} \log \left(\frac{m_W - p_T^{\gamma} \cos \theta^{\star}}{m_W + p_T^{\gamma} \cos \theta^{\star}} \right)$$

when photon pT $<< m_w$

Effect of PDFs for RAZ

expected position of RAZ

Amplitude zero a feature of the LO amplitude only \rightarrow partially washed out at higher orders

Experimental evidence for RAZ

Experimental issues that wash out dip:

- • use of lepton rapidity rather than reconstructing W (retains most information)
- \diamond contamination from photon radiation in W decay

D0, arXiv 1109.4432

CMS. PAS-EWK-11-009

Vector bosons: experimental summary

and NLO (di-bosons) for all processes in both experiments

Vector bosons: experimental summary

Good consistency with theory expectations of NNLO (W/Z), and NLO (di-bosons) for all processes in both experiments

Thank you for your attention!

Please feel free to ask me questions jqiu@bnl/gov

Backup slides

Factorization is an approximation

Multiple scattering and power correction:

Fragmentation function and isolation cut:

$$\sigma(P_T) \propto \hat{\sigma}(P_T, x_1, x_2, \mu) \otimes \phi(x_1, \mu) \otimes \phi(x_2, \mu) \otimes D(z)$$

+ $\mathcal{O}(\frac{Q_s^2}{p_T^2})$
Note: $\ln(R)$ Cone size cannot be too small
 $\ln(E_h/E_\gamma) \longrightarrow E_h/E_\gamma$ Not too small

Threshold resummation could help

□ Threshold resummation – rate at fixed target energy:

Laenen, Sterman, Vogelsang, 2008

CTEQ Huston et al.

 \Box Intrinsic k_T – x_T dependence at fixed target energy:

Mimic the resummation of initial-state gluon shower

 \diamond Large effect on a steep falling P_T distribution

Resummation helps π^0 cross section too

de Florian and Vogelsang, hep-ph/0501258

What happens at RHIC energy?

Reduced enhancement at RHIC energies than fixed target energies

Photon can penetrate the medium

□ Photon tells the history:

High P_T photon penetrates the medium without suppression

"Photon" at low p_T in Au-Au collisions

 \Box Low mass e⁺e⁻ pairs \longrightarrow direct photon production:

arXiv:0804.4168 (PRL in press)

$$\frac{d^2 n_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) S dn_{\gamma}$$

 ${\cal S}\,$: process dependent factor

 $\sqrt{s} = 200 \text{ GeV}$ $m_{ee} < 0.3 \text{ GeV}/c$ $1 < p_T < 5 \text{ GeV}/c$

Difference pp vs AA – thermal photon

 $T = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}} \text{ MeV}$

Invariant cross section in pp collision

Kang, Qiu, Vogelsang, PRD 2009

$$E\frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{d^3Q} \equiv \int_{Q^2_{\min}}^{Q^2_{\max}} dQ^2 \, \frac{1}{\pi} \, \frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{dQ^2 \, dQ^2_T \, dy}$$

□ Role of non-perturbative fragmentation function:

Definition:

♦ Input FF:

 $D(z,\mu_0) = D^{\text{QED}}(z) + \kappa D^{\text{NP}}(z)$

 \diamond **QED** alone (dotted):

 $\kappa = 0$ at $\mu_0 = 1$ GeV

 \diamond QED + hadronic input (solid):

 $\kappa = 1$ at $\mu_0 = 1$ GeV

Hadronic component of fragmentation is very important at low Q_T

Data from PHENIX: arXiv:0804.4168

"Direct photon" approximation

□ Dilepton production vs direct photon production:

$$E \frac{d\sigma_{AB \to \ell^+ \ell^-(Q)X}}{d^3 Q} \approx \frac{d\sigma_{AB \to \gamma(\hat{Q})X}}{dQ_T^2 dy} \int_{Q_{min}^2}^{Q_{max}^2} dQ^2 \left(\frac{\alpha_{em}}{3\pi^2 Q^2}\right) \sqrt{1 - \frac{4m_{\ell}^2}{Q^2}} \left(1 + \frac{2m_{\ell}^2}{Q^2}\right)$$

$$\approx \frac{\alpha_{em}}{3\pi} \ln \left(\frac{Q_{max}^2}{Q_{min}^2}\right) E_{\gamma} \frac{d\sigma_{AB \to \gamma(\hat{Q})X}}{d^3 Q} \leftarrow \text{Direct photon cross section}$$

$$Q_{min} = 0.1 \text{ GeV}$$

$$Q_{max} = 0.3 \text{ GeV}$$

$$\sqrt{s} = 200 \text{ GeV}$$

$$y = 0$$

$$\varphi = 0$$

$$Gordon, \text{ Vogelsang, 1993}$$

$$\Rightarrow \text{Direct photon code has}$$

$$similar non-perturbative fragmentation functions$$

5.5

5

Q_T (GeV)

```
\diamond Low mass dilepton
```

~ inclusive photon production

з

3.5

4.5

4

p+p

2

2.5

1.5

1

Data from PHENIX: arXiv:0804.4168

Au-Au data: beyond shadowing + isospin

Vector boson scattering

Another way to probe EW sector:

□ Simulation:

Top pair in association with W or Z

CMS - results:

CMS-1406.7830

Channels used	l Process	Cross section
2ℓ	tīW	$170^{+90}_{-80}({ m stat})\pm70({ m syst}){ m fb}$
$3\ell+4\ell$	tīZ	$200^{+80}_{-70}({ m stat})^{+40}_{-30}({ m syst}){ m fb}$
$2\ell+3\ell+4\ell$	$t\overline{t}W + t\overline{t}Z$	380^{+100}_{-90} (stat) $^{+80}_{-70}$ (syst) fb
€ 500 400 300 200		19.5 fb ⁻¹ (8 TeV)
100		
0 100	200	300 400 500 600 σ _{+w} [fb]

Theory - NLO

Slightly off for $\sigma_{t\bar{t}W}$