Signals for Double Parton Scattering Presented by Brenna Flaugher Fermilab CTEQ Symposium Nov. 7-9, 1996 Fermilab ### Double Parton Scattering (DPS) Two parton-parton hard scatters in one $p\bar{p}$ collision. Extend knowledge of proton structure - spatial distribution of partons inside proton - parton-parton correlations - → impact on PDFs? # QCD and Double Parton Scattering (DPS) in $\gamma + 3$ jet events ### Double Parton Scattering Cross Section DPS cross section: the product of <u>two hard</u> scatters modulated by a scale factor (σ_{eff}) : $\sigma_{\mathbf{DP}} = \mathbf{m} \; \sigma_{\mathbf{A}} \; \frac{\sigma_{\mathbf{B}}}{2\sigma_{\mathbf{eff}}}$ factor of 2 is convention (Poisson statistics) m is a combinatorial factor: m=2 when A and B are distinguishable m=1 when A and B are NOT distinguishable Uniform parton distribution $\rightarrow \sigma_{eff}$ is large and σ_{DP} is small Clumpy parton distribution $\rightarrow \sigma_{eff}$ is small and σ_{DP} is large If assume protons are spheres with constant parton density: $$2\sigma_{eff} \approx \frac{\sigma_{NSD}}{2.3} \Rightarrow \sigma_{eff} \approx 11mb$$ No reason to assume DPS does not take place. In fact it must occur at some level. Theoretical discussion of DPS has been going on many years, at least since the early 1980's. Problem is experimentally extracting a signal from double brem background Typically experiments choose 4-jet samples \rightarrow high cross section. Measuring σ_{eff} in 4-jet samples: $$\sigma_{ extbf{DP}} = rac{\sigma_{ extbf{JJ}}^2}{2\sigma_{ ext{eff}}}$$ m = 1: two 2-jet events are indistinguishable Measure σ_{DP} but need QCD calculations of σ_{JJ} to get σ_{eff} . Another problem: $$rac{\sigma(DP)}{\sigma(QCD)}$$ decreases as P_T increases. ### Cross Section Comparison (Parton Level MC) ## Measuring σ_{DP} use topological variables sensitive to pairwise P_T balance: $$S(A, B) = \frac{1}{\sqrt{2}} \sqrt{\frac{|\mathbf{P_t}(\mathbf{A})|^2}{\delta_{\mathbf{A}}^2} + \frac{|\mathbf{P_t}(\mathbf{B})|^2}{\delta_{\mathbf{B}}^2}}$$ A and B are the best two-body pairs $P_t(A)$, $P_t(B)$ = pair transverse momentum δ_A , δ_B = momentum resolution for $P_t(A)$, $P_t(B)$. QCD: S is broad distribution DPS: S is peaked toward low values $\Delta S \equiv \text{angle between } P_t(A) \text{ and } P_t(B)$ QCD: $\Delta S \approx \pi$ DPS: $\Delta S \approx \text{flat}$, random QCD Monte Carlo \rightarrow Double Brem shapes DPS: combine two 2-jet events from data. Double parton fraction: fit data distributions to a linear combination of Double Brem and Double Parton shapes. Shelpe of topological Variables Sand De for QCD Double Brem and for Double Parton Model. - AFS: $\sqrt{s} = 63$ GeV, $E_T > 4$ GeV (1987) $\sigma_{eff} \approx 5$ mb - UA2: $\sqrt{s} = 630 \text{ GeV } E_T > 15 \text{ GeV Phys. Lett. B } 468$, $\Rightarrow \sigma_{eff} > 8.3 \text{ mb}$ - $\Rightarrow \sigma_{eff} = 12.1^{+10.7}_{-5.4} \text{ mb},$ \Rightarrow DP fraction = $5.4^{+1.6}_{-2.0}\%$ New analyses by CDF and D0: **D0**: 4-jets $E_T > 25$ GeV, Neural Net compare data and QCD (Pythia 4-jets). CDF: $\gamma + 3$ jet $\rightarrow low E_T$: $E_T^{photon} > 16 \text{ GeV}, E_T^{jet} > 5 \text{ GeV}$ Use ratio of Double Interaction (two separate) $p\bar{p}$ collisions) and DPS rates 4. $par{p}$ collisions) and DPS rates to extract σ_{eff} ightarrow reduce dependence on Monte Carlo. ## CDF 1989 Result CDF 4-Jet Data compared to 4 Jet . 4.C. and to best fit admixture of QCD double brem. + Double Parter Scattering Prs 6 15 GeV ## DØ DPS analysis 4 Jet ET > 25 GeV Train Newal Net to separate DP model from 2-Jet + 2Jet data = 1 Independent 4 Jet data sample ~ Double Brem QCD = 0 ## Data Sample: CDF γ + 3 jet analysis - Trigger: $E_T^{\gamma} > 16 \text{ GeV}$ - Run 1A: 16 pb⁻¹ - $|\eta^{\gamma}|$ < 0.9 - Isolation <4 GeV in cone R=0.7 around γ - $ullet |\eta^{jet}| < 4$ - # jets = 3 - $E_T^{jet1} > 5 \text{ GeV}$ - 5 GeV $< E_T^{jet2}, E_T^{jet3} <$ 7 GeV - $\Rightarrow \approx 16,000 \ N_{VTX} = 1 \ \mathrm{DP} \ \mathrm{candidates}$ - $\Rightarrow \approx 5,500 \ N_{VTX} = 2 \ DI \ candidates$ ## QCD and Double Interactions (DI) To separate types a, b, and c, associate tracks in jets to a vertex. $DI \equiv \geq 1$ jet from second vertex Goals of γ + 3 jet analysis Determine $f_{DP} = \frac{\#DPS}{Total}$ events Determine σ_{eff} Look for parton correlations Two approaches to measuring f_{DP} : - Like 4-jet analysis: use Pythia to model QCD double brem, combine events to model DPS \rightarrow fit distributions for f_{DP} f_{QCD} . - Use data: contrast two separate data samples which have different f_{DP} to determine f_{DP} and f_{QCD} - \Rightarrow both give similar results: $f_{DP} = 52\pm1$ % stat. ### To measure f_{DP} and f_{QCD} use 6 variables: solid = Pythia, dashed = Double Parton Model ## Admixture of 52% DP + 48% QCD provides best fit to the data. ### Two Dataset Method Know signal (DP) properties from Mixed event sample, but not BKG (QCD). Separate data into 2 samples: Assume QCD component has same shape in A and B. Vary k until A-kB distribution = the DP distribution. Extract f_{DP} from k: Result $\rightarrow f_{DP} = 52\%$ ## Determination of σ_{eff} Previous 4-jet analysis: $$\sigma_{ ext{eff}} = \mathbf{m} \; \sigma_{\mathbf{A}} \; rac{\sigma_{\mathbf{B}}}{2\sigma_{\mathbf{DP}}}$$ Processes A and B were dijets, $\sigma_A = \sigma_B = \sigma_{JJ}$, calculated by Monte Carlo, and m=1 CDF has developed new way to extract σ_{eff} : Number of DPS events in 1-VTX $\equiv N_{DP}$ Number of DI events in 2-VTX $\equiv N_{DI}$ (associate tracks in jets to a vertex, DI $\equiv \geq 1$ jet came from 2nd vertex.) $$\sigma_{eff} = (\frac{N_{DI}}{N_{DP}})(\frac{\sigma_{NDS}}{2})(\frac{m}{2})(\frac{N_{C}(1)}{N_{C}(2)})$$ $N_C(1)$ and $N_C(2)$ are the # beam crossings with 1 or 2 collisions Preprint from Drees and Han: if A and B are distinguishable, then $m=2 \rightarrow under discussion$ If $$m=2 \Rightarrow \sigma_{eff} = 10 \pm 1^{++}_{-2} \text{ mb}$$ ### Parton Correlations Clumpy parton distribution: If one collision is at high x other one will be too. Look for x dependence to σ_{eff} in enriched DPS sample: Δ S < 1.2 \Rightarrow $f_{DP} = 87\%$ Compare data (Correlations?) to DP model (NO Correlations) ### **Parton Correlations** ### Also look at P_t : ### **Parton Correlations** ### Also look at P_z : Data and uncorrelated DPS model show good agreement \Rightarrow No correlations in Mass, P_t or P_z ### Conclusions CDF has observed a strong signal for Double Parton Scattering: - factor of ≈ 10 increase in signal strength - factor of ≈ 8 increase in statistics - developed new technique which is ≈ independent of QCD Modeling CDF PRELIMINARY: $$f_{DP} = 52 \pm 1\%$$ stat. $$\sigma_{eff} = 10 \pm 1^{+4}_{-2} \text{ mb (if m=2)}$$ No kinematic correlations observed #### Future: - determine m - study possible correlations - Quantify D0 Neural Net observation - extend to other processes: $$\gamma, \gamma$$ jet, jet e, e, jet, jet