

Outline

- Extra-Dimension Theory
 - Randall-Sundrum Model
- Experiments
 - Tevatron
 - Superconducting Super Collider
 - Large Hadron Collider (LHC)
- Graviton->γγ Analysis
 - Recent Mass Limit
 - Analysis at ATLAS

Extra-Dimension Theory

- proposes higher dimensional space in order to solve the so called hierarchy problem;
 - discrepancy between the Electroweak scale and Planck Scale
- Electroweak scale (TeV scale): the energy scale ~246 GeV
 - dominates the particles at low energies, standard model particles
- Planck Scale: energy scale around 10¹⁶ TeV.
- The gravity, one of the four forces of nature, is weak in this Electroweak scale but strong in Planck Scale

Randall-Sundrum Model

- Randall-Sundrum Model is established by Lisa Randall and Raman Sundrum in 1999.
- particles are restricted to the (3+1) dimensional brane (TeV Brane) and the graviton propagates in all the dimensions.
- Graviton is a hypothetical elementary particle that mediates the force of gravity

Randall-Sundrum Model (cont'd)

- RS Model states that
 - universe has a warped geometry
 - and the extra-dimensions which are in finite size are curled-up, or "compactified".
- We don't feel the extra dimension because the displacement in our brane is "o" when we move in curled extra-dimension.

Randall-Sundrum Model (cont'd)

- According to Randall-Sundrum Model, Graviton decays to
 - Dilepton (G*-> e+e-, G*->μ+μ-, G*->τ+τ-)
 - Diphoton (G*->γγ)
 - And Proton collisions in high energies produce graviton
 - Tevatron and LHC are the highest energy experiments of the world

Tevatron

- Located in Brookhaven National Laboratory (BNL), Chicago, Illinois
- World's 2nd highest energy particle collider
- Costs over \$400 million
- Running since 1983
- Planned to keep running till 2011 (2012)
- Center of mass energy= 1.96 TeV

Tevatron (cont'd)

- Two experiment in the ring of Tevatron accelerator: DØ and CDF
- In 1995, the CDF and DØ collaborations announced the discovery of the top quark

Superconducting Super Collider

- started to be constructed in Waxahachie, TX in 1991
- Canceled in 1993 due to budget issues
 - Available funds are used for LHC
- Center of mass energy=40 TeV
 - 20 times larger than Tevatron
 - 3 times larger than LHC

Large Hadron Collider (LHC)

- World's largest proton-proton collider
- located near Geneva, where it spans the border between Switzerland and France
- Accelerator ring circumference: 27 km, and 100m underground
- Center of mass energy = 14 TeV (each beam has 7 TeV)
 - Now running with 7 TeV center of mass energy
- Experiments: ATLAS, CMS, ALICE, LHCb, TOTEM, LHCf.

- ATLAS is one of two general-purpose detectors at the LHC
- It will investigate a wide range of physics:
 - Higgs boson,
 - extra dimensions,
 - particles that could make up dark matter
- will record sets of measurements on the: their paths, energies, and their identities.
- More than 2900 scientists from 172 institutes in 37 countries

ATLAS (cont'd)

http://www.atlas.ch/detector-overview/detects-particles.html

ATLAS (cont'd)

- On November 23, 2009 ATLAS collaboration saw the first collisions at 900 GeV.
 - The world record of 2.36 GeV on November 30, 2009
- And on March 30, 2010 saw the first collision at 7 TeV
 - http://www.atlas.ch/multimedia/html-nc/animation-7TeV-event.html

Recent Limit on Graviton Mass

- analyses on the Tevatron data put limits on the graviton mass
- 1 fb⁻¹ DØ (2008) data excluded Graviton M_G < 300 GeV/c²</p>
- 5.4 fb⁻¹ DØ data (2010) excluded Graviton $M_G < 560 \text{ GeV/}c^2$
 - \odot with coupling $k/M_{Pl}=0.01$
 - \emptyset M_{Pl} : effective Planck scale
 - k: curvature of extra dimension

8/13/10

Graviton->γγ Analysis at ATLAS

- Current ATLAS luminosity is ~1 pb⁻¹
 - not enough to detect or exclude Graviton mass
 - How much luminosity we need to beat DØ limit (560 GeV)?
- simulation datasets are used to estimate the limits
- These datasets are generated by PYTHIA
- PYTHIA is the event generator system that reflects the theoretical calculations

G*->γγ Analysis at ATLAS (cont'd)

- Till mid 2009, I studied the Graviton at 14 TeV energy
 - Since this was the planned center of mass energy
- Simulation Datasets
 - Signal: $M_G = 500 \text{ GeV/c}^2$ and $M_G = 1 \text{ TeV/c}^2$ (k/M_{Pl}=0.01)
 - **8** Background: Diphoton, γ + Jets, Dijets
 - Probable pairs those looks like Graviton signal

G*->γγ Analysis at ATLAS (cont'd)

- We selected the diphoton events from data based on
 - interesting collisions (by electronic system: trigger)
 - The shower shapes in the Electromagnetic calorimeter
 - Photons produce shower in EM calorimeter as deposits energy
 - P_T (transverse energy)

Kamile Dindar-Yagci, QuarkNet Workshop

Etcone45: energy deposited in cone of 0.45 rad

G*->γγ Analysis at ATLAS (cont'd)

Event yields for G->γγ 500 GeV/c² signal normalized to 1fb¹¹ luminosity are listed in table:

Sample	σ×BR (pb)	Yield 470 < m _{vv} < 500 1fb ⁻¹
Graviton M _G = 500 GeV/c ²		137.7±2.3
Diphoton		6.3±1.5
γ+Jets	211.66	5.7±1.9
DiJets	329860	0.028±0.003

- we estimated that 13 pb⁻¹ integrated luminosity is needed to exclude Graviton $M_G = 500 \text{ GeV/}c^2 \text{ (k/M}_{Pl} = 0.01)$
 - at 14 TeV with 95% C.L.

G*->γγ Analysis at 7 TeV

- According to our latest analysis in 7 TeV Data simulation data shows that
 - 78 pb⁻¹ integrated luminosity is needed to exclude 500 GeV
 Graviton mass with k/M₂ = 0.01
 - However 10 pb⁻¹ will be enough to put a limit above 600 GeV, if the G-> $\gamma\gamma$ coupling is greater than 0.03.
- LHC is going to reach the 10 pb⁻¹ luminosity this winter
 - So will have enough data to go further than Tevatron limits