Cosmic Drizzle

Thomas Coan

- What's a "cosmic ray" (note the "s")
- Origin, propagation and lifetime of CRs
- Digression 1: facts about your mother
- Digression 2: how to measure thickness (huh?)
- Muons, muons, muons ...

The Primary Drizzle

Atomic nuclei strike upper atmosphere. Produce secondaries. Extraterrestrial origin, mostly outside the solar system Mostly protons (~95%) & He (~5%). Heavier stuff too. Long -lived: ~15 Million years.

The Secondary Drizzle

Secondaries include n, Kaons, pions. Kaons, pions decay quickly (more later) $n + N^{14} \rightarrow p + C^{14}$

Secondary production is a big deal. e.g., Auger experiment. (story for another day.)

Mass of our Atmosphere

Mass of our Atmosphere (2)

How to Measure Thickness

For a particle physicist, a material's "thickness" depends on **both** its mass density **and** its length. Combining density and length better than either alone. $s = \rho x$ units of s may seem a bit weird, mass per area, e.g., kg/m²

Q: How thick is the atmosphere?

A: $s = \rho h = P/g$ (recall that $P = \rho gh$)

 $s \approx 10^5/10 = 10^4 \text{ kg/m}^2 = 1000 \text{ g/cm}^2$

What does this mean? How much Fe has this thickness?

How to Measure Thickness

For a particle physicist, a material's "thickness" depends on **both** its mass density **and** its length. Combining density and length better than either alone. $s = \rho x$ units of s may seem a bit weird, mass per area, e.g., kg/m²

Q: How thick is the atmosphere?

A: $s = \rho h = P/g$ (recall that $P = \rho gh$)

 $s \approx 10^5/10 = 10^4 \text{ kg/m}^2 = 1000 \text{ g/cm}^2$

What does this mean? How much Fe has this thickness? $\rho(Fe) = 7.87 \text{ g/cm}^3$ x = s/ $\rho \approx 10^3/8 = 125 \text{ cm}$

Muon Drizzle

What is a muon?

What it ain't: a "fundamental building block" of the universe Belongs to the set of particles Comprising only 4% of Universe's mass-energy. Story (a very interesting one) for another day.

Pragmatic definition: a heavy, radioactive electron-like particle

Heavy: $m_u \approx 210 m_e$

Radioactive: Half-life = $1.5 \mu sec$ ("e-folding time" = $2.2 \mu sec$)

Same electric charge as an electron (can be + or -)

Both e & μ are **point-like** (as far as anybody can tell).

Muons at the beach (er ... sea-level)

Muons produced high (~10 km) in the sky

Muons are in a hurry $(v \sim c)$

Muons don't live forever: $\tau\approx$ 2.2 μsec

WAIT. Looks like they don't travel very far: V * $\tau \approx$ (3 X 10⁸ m/sec)*(2.2 X 10⁻⁶ sec) = 660 meters

Relativity to the rescue:

High velo implies strong time dilation. (The lifetime is measured in muon's **rest** frame.)

Flux @ sea-level: 1/cm²-min (horizontal surface) 1/thumbnail-min

BTW, How do you "see" muons?

Multiple ways to detect muons. one way is:

- Electric field from muon excites atoms of target
- This costs energy, energy taken from muon's KE
- In special target material (i.e., "scintillator"), excited atoms, emit faint bluish light when they de-excite
- Emitted light is easily detected by a "photomultiplier tube"
- "photomultiplier tube" (PMT): a kind of light bulb in reverse
 Feed it light, it spurts a small amount of electricity.
 Quite common, see your grocery check-out counter.

Photomultiplier Tube

I will pass a few (broken ones) around.

Working muon detector ...hubba,hubba

Ground floor Fondren Science Built by SMU faculty (Jingbo Ye & TEC) Runs continuously Measures muon lifetime <u>shameless plug</u>

Check it out

What to Remember

- Grand Where lunch is.
- Extraterrestrial protons drizzle top of atmosphere.
- Atmosphere has appreciable thickness.
- These protons collide w/ air nuclei, produce muons.
- Muons survive down to sea level (time dilation req'd).
- Muon flux @ sea level is 1/cm²-min.
 (1 per minute through your thumb nail)

What to Remember

- Grand Where lunch is.
- Extraterrestrial protons drizzle top of atmosphere.
- Atmosphere has appreciable thickness.
- These protons collide w/ air nuclei, produce muons.
- Muons survive down to sea level (time dilation req'd).
- Muon flux @ sea level is 1/cm²-min.
 (1 per minute through your thumb nail)

