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Introduction 

 

Most of us have had the experience of listening to the weather report and hearing at one time or 
another the announcer say “the chance of rain tomorrow is 70%.” What does this statement 
mean? Intuitively, you might say that it is more likely than not that it will rain tomorrow. If we 
somehow managed to experience many days like today, then we would expect that more often 
than not it would rain the next day. This weather forecast, like all statements about chance, is a 
kind of guess. Our ignorance prevents us from making a firm statement about whether or not it 
definitely will rain the next day. The theory of probability permits us to make sensible and 
quantitative guesses about matters that have a consistent average behavior. To be clear about 
what the word “probability” really means and how you actually calculate it, consider the case 
where you throw two dice, one green and one red. Each die face can show any integer in the 
range from 1 to 6 and you are interested in the sum of the two die faces. You want to know what 
the “probability” of rolling a total of 5 is because if you can reliably determine this probability 
you will win much money. The outcome – the sum of the die faces - can be any integer between 
2 and 12. In our example, there are a number of different ways that a total of 5 can be rolled. Call 
this set of different ways A and we have 
 

A = {(1,4), (2,3), (3,2), (4,1)}, 
 
where the first number in each ordered pair is the number the red die shows and the second 
number is the number the green die shows. Each ordered pair of numbers is called an outcome 
and each roll of the die pair is called an “experiment.” You should be able to convince yourself 
that there are a total of 36 possible outcomes when rolling the dice. The red die can show any 
integer from 1 to 6 and since for each of these numbers the green die can show any number from 
1 to 6, 6 X 6 makes 36. Useful jargon is that the set of all possible outcomes in an experiment is 
called the “sample space.” For our experiment of rolling two dice at a time, the sample space is 
the set of 36 possible outcomes or ordered pairs of numbers. Do not confuse the sample space 
with the total number of times you happen to roll the dice, which could be 65 times or 500,000 
times. What does this have to do with calculating the probability of rolling a 5? Well, by 
“probability” of a particular outcome of an experiment, we mean our estimate of the most likely 
fraction of a number of repeated observations that will yield that particular outcome. And do how 
do you calculate this probability? If you think that each outcome is equally likely, you simply 
sum up the number of outcomes that will yield a particular event and then divide by the size of 
the sample space. In our example, there are 4 possible outcomes that produce the “event” of 
rolling a total of 5 and there are 36 total possible outcomes in our sample space, so the 
probability of rolling a 5 is 4/36 = 1/9. 
 
There are subtleties you should be aware of. To assign a probability to some outcome, it is 
necessary that the experiment be capable of being repeated. For example, it is far from clear that 
the statement, “the probability that Jack Ruby murdered John Kennedy is 85%”, has any 
meaning at all. How do we arrange to run many “experiments” with the participation of the 



deceased? Is the deceased supposed to be repeatedly resurrected after the murder so that the 
experiments can continue? Secondly, as more information becomes available to us, our 
probability estimate for a particular outcome in the experiment can change. Suppose the 
experiment is that your sister draws a card from a standard deck and then asks you the 
probability that it is a queen. If you find out somehow that your sister nervously twitches her ears 
when she draws either aces or queens, then your answer will certainly depend on the motion of 
her ears. Having the extra information doesn’t change the experiment in any way (your sister 
twitches her ears whether you know it or not), it does however change your knowledge of the 
experiment. 
 
When we are playing with our dice, we do not necessarily expect that if we roll the dice 45 times 
we will observe that exactly 1/9 of the time the sum of the die faces will be 5, even if the dice are 
honest. This does not mean that our notions of probability are useless. It does mean that to make 
a probabilistic statement implies that we have a certain amount of ignorance of the experimental 
situation. If we somehow knew everything, we could say exactly what the dice were going to do. 
However, we can say that if we keep rolling the dice, we do expect that the fraction of times the 
die face sum to 5 will come closer and closer to 1/9. 
 
So, how many times do we have to roll the dice before we are confident that our probability 
calculation is really correct? The answer is there is no specific number of times we need to roll 
the dice that will definitely tell us one way or the other that our probability calculation is 
absolutely correct! The reason is that there is some chance, no matter how small, that the dice 
after many throws happen to come up summing to 5 at a rate different from 1/9. (For example, if 
you threw the dice 99,000 times, it is certainly possible that the number of times the dice 
summed to 5 could be different from 11,000 even if there is no cheating.) The important point 
here is that we expect that the more often we roll the dice, the more likely the summed results 
approach our probabilistic predictions. Differences between the actual results of our experiments 
and our probabilistic predictions are called “statistical fluctuations.” If our probabilistic 
predictions are sensible, then we expect the statistical fluctuations to become smaller as the 
number of times we perform the experiment becomes larger, i.e., the larger the “statistics” we 
collect. 
 
To summarize, we want to check two important ideas about probability. First, we want to check 
the idea that the probability for an experiment can be estimated by counting outcomes of actual 
experiments. Secondly, we would like to verify that as the number of experiments increases, the 
statistical fluctuations decrease. If our ideas of probability are sensible, then we expect that our 
theoretical calculation of the fraction of time a particular sum shows should more closely match 
the actual observations as we perform more and more experiments. 
 
 
 
 
 
 
 
 



Equipment: jar and 1 pair dice. 

Procedure: 

Each of you will perform your own experiments with your own jar. A “roll” of the dice just means
you briefly shake the jar. You are interested in the sum of the numbers showing on your dice. 

1. Fill out the second row in table 1 by adding up the number of different possible outcomes.
Show your working and just enter the final result in the table. 

2. Complete table 1. For the 3rd  row, keep your answers in fractional form for now.

3. Now you will perform many rolls by shaking the jar and observing the dice sum after each roll.
Each person should perform at least 50 rolls of their dice, recording how often you get the sums 
2 – 12 in row 2 of table 2 (“observed number of events”). Tallying the results of the individual 
experiments in your notebook will make your life easier. Using the total number of rolls, fill out 
row 3 of table 2 (“relative fraction of observed events”); keep your answers in fractional form for 
now.  

4. Move on to table 3, “Class Rolls.” Enter your results for each event (a particular sum) on the
instructor's computer spreadsheet, which will be displayed to the class. 
Fill out row 2 with the sum of the results for each event from everyone in the lab. 

Using the total number of rolls in table 3, compute the entries for row 3.
 
 
Questions 

1. Add up all the probabilities for all possible outcomes in table 1.
Clearly explain what this number means.
Add up the fractions in the 3rd row of table 2. (If you get something different from the
previous answer you’ve done something wrong.)

2. Plot a graph with the sum numbers 2 -12 on the horizontal axis, and the fraction of events
on the vertical axis (you will need to convert them to decimals to plot them) for results
from tables 1, 2, and 3. Do everything on one graph, use a different plot point style for
results from each table, and join the points from table 1 with a smooth line.

3. Using your graph to help you, compare the fractions in each box in the last row of table 1
with its corresponding box in table 2.
Describe the similarities
Describe the differences

4. Describe whether the agreement between the box pairs of table 1 and table 2 is better or
worse than the agreement between box pairs of table 1 and table 3.

5. Using table 1 to help you, calculate the probability of the dice sum showing a sum
between 2 and 5 inclusive. Compare it with the actual results from table 3.

 



Table 1. Theory

Sum 2 3 4 5 6 7 8 9 10 11 12

Number of
outcomes

Probability

Table 2. Private Rolls.

Sum 2 3 4 5 6 7 8 9 10 11 12
Observed number

of events
Observed relative
Fraction of events

Table 3. Class Rolls.

Sum 2 3 4 5 6 7 8 9 10 11 12
Observed number

of events
Observed relative
Fraction of events
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