PHYS 1301 IDEAS OF MODERN PHYSICS
Quantum Test

The following are practice questions for the test. You will need a simple calculator in the test (phones
not accepted). Appended to this document is self-study material to help you master the problems.

The following formulas will be given on the test paper:
P=h/A E=hf kinetic energy = % m v? (slow moving matter)
Activity =AN  t1,=0.693/A

h=6.63x10%1Js lev= 1.6x10") 1u=1.66x10%kg

1. Photons

1.1 Determine the energy in eV of a single photon in a beam of light of wavelength 450 nm.
[2.8 eV]

1.2 A laser produces 3.0 W = 3 J/s of light energy at wavelength 600 nm. How many photons per
second are produced?
[9.1 x 10%]

1.3 Photons of energy 5.0 eV strike a metal whose work function is 3.5 eV. Determine the
maximum kinetic energy of the emitted electrons
1.5 eV

2. De Broglie Wavelength

2.1 What kinetic energy must each neutron in a beam of neutrons have if their wavelength is

0.10 nm? The mass of a neutron is 1.67 x 10 kg.
[1.3 x 10> J]

2.2 Approximately, what is the de Broglie wavelength of an electron that has been accelerated

through a potential difference of 150 Volts? The mass of an electron is 9.11 x 10° kg and the
electric charge is 1.6 x 10" Coulombs. A charge q Coulombs gains energy g Joules when moving
through a potential difference of 1 V.

[ 0.1 nm ]

2.3 What is the kinetic energy of each electron in a beam of electrons if the beam produces a
diffraction pattern which is similar to that of a beam of 1.00 eV neutrons?

Note: The electron mass is 9.11 x 10 kg; and the neutron mass is 1.67 x 10" kg.

[1830 eV]



3. Binding Energy

3.1 The binding energy of an isotope of chlorine is 298 MeV. What is the mass defect of this
chlorine nucleus in atomic mass units?

[0. 320 u]

3.2 The proton has a mass of 1.007 28 u; and the neutron has a mass of 1.008 67. Use this
information to determine the binding energy per nucleon of 22¢Thwhich has an atomic mass of
232.038 054 wu.

(7.4 MeV]

3.3 How much energy is required to remove a neutron (mass = 1.008 665 u) from

15N that has an atomic mass of 15.000 108 u to make %N that has an atomic mass of 14.003 074
u?

[10.83 MeV]

4. Radioactivity

4.1 An isotope of krypton has a half-life of 3 minutes. A sample of this isotope produces 1000
counts per minute in a Geiger counter. Determine the number of counts per minute produced
after 15 minutes

[30]

4.2 The same activity is measured for two different isotope samples. One sample contains

0. 0450 kg of *%,U (atomic mass = 230.033 937 u, tiz= 20.8 days). The second sample contains
an unknown amount of 2!,U (atomic mass = 231.036 264 u, tiz= 4.3 days). What is the mass of
the second sample?

[0. 0093 kg]

4.3 The activity of carbon—-14 in a sample of charcoal from an archaeological site is 0.04 Bq
Determine the age of the sample. The half-life of carbon—14 is 5730 years
[14 500 yr]
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Figure 29.4 In the photoelectric
effect, light with a sufficiently high
frequency ejects electrons from a metal
surface. These photoelectrons, as they
are called, are drawn to the positive
collector, thus producing a current.

Ammeter

Experimental evidence that light consists of photons comes from a phenomenon

- called the photoelectric effect, in which electrons are emitted from a metal surface whep

light shines on it. Figure 29.4 illustrates the effect. The electrons are emitted if the light
being used has a sufficiently high frequency. The ejected electrons move toward a positive
electrode called the collector and cause a current to register on the ammeter. Because the
electrons are ejected with the aid of light, they are called photoelectrons. As will be dis-
cussed shortly, a number of features of the photoelectric effect could not be explained
solely with the ideas of classical physics.

In 1905 Einstein presented an explanation of the photoelectric effect that took advan-
tage of Planck’s work concerning blackbody radiation. It was primarily for his theory of
the photoelectric effect that he was awarded the Nobel Prize in physics in 1921. In his
photoelectric theory, Einstein proposed that light of frequency f could be regarded as a
collection of discrete packets of energy (photons), each packet containing an amount of
energy E given by

Energy of a photon E = hf (29.2)

where % is Planck’s constant. The light energy given off by a light bulb, for instance, is car-
ried by photons. The brighter the bulb, the greater is the number of photons emitted per sec-
ond. Example 1 estimates the number of photons emitted per second by a typical light bulb.

Example 1 Photons from a Light Bulb

In converting electrical energy into light energy, a sixty-watt incandescent light bulb operates
at about 2.1% efficiency. Assuming that all the light is green light (vacuum wavelength =
555 nm), determine the number of photons per second given off by the bulb.

Reasoning The number of photons emitted per second can be found by dividing the amount
of light energy emitted per second by the energy E of one photon. The energy of a single pho-
ton is E = hf, according to Equation 29.2. The frequency f of the photon is related to its wave-
length A by Equation 16.1 as f = c/A.

Solution At an efficiency of 2.1%, the light energy emitted per second by a sixty-watt bulb is
(0.021)(60.0 J/s) = 1.3 J/s. The energy of a single photon is

he (663 X 1073 J-5)(3.00 X 108 m/s)

E=hf= N 55 x 10°m =358 X 10777
Therefore,
Number gf 137/
photons emitted = <15 Tphoton 3.6 X 108 photons/s
per second

According to Einstein, when light shines on a metal, a photon can give up its energy
to an electron in the metal. If the photon has enough energy to do the work of removing
the electron from the metal, the electron can be ejected. The work required depends on
how strongly the electron is held. For the least strongly held electrons, the necessary
work has a winimum value W, and is called the work function of the metal. If a photon
has energy in excess of the work needed to remove an electron, the excess appears as ki-
netic energy of the ejected electron. Thus, the least strongly held electrons are ejected
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with the maximum kinetic energy KE,,,. Einstein applied the conservation-of-energy
principle and proposed the following relation to describe the photoelectric effect:

hf = KEme + W (29.3)
—— — ——
Photon Maximum Minimum
energy kinetic energy work needed to
of ejected eject electron
electron

According to this equation, KEx = hf — Wo, which is plotted in Figure 29.5, with
KE .« along the y axis and f along the x axis. The graph is a straight line that crosses the
x axis at f = f,. At this frequency, the electron departs from the metal with no kinetic en-
ergy (KEn.x = 017). According to Equation 29.3, when KE, = 0J the energy hf, of the
incident photon is equal to the work function W, of the metal: hfy = Wy.

The photon concept provides an explanation for a number of features of the photo-
electric experiment that are difficult to explain without photons. It is observed, for in-
stance, that only light with a frequency above a certain minimum value f; will eject elec-
trons. If the frequency of the light is below this value, no electrons are ejected, regardless
of how intense the light is. The next example determines the minimum frequency value
for a silver surface.

Example 2 The Photoelectric Effect for a Silver Surface

v

The work function for a silver surface is W, = 4.73 eV. Find the minimum frequency that
light must have to eject electrons from this surface. '

Reasoning The minimum frequency f; is that frequency at which the photon energy equals
the work function W, of the metal, so the electron is ejected with zero kinetic energy. Since
1 eV = 1.60 X 1071 J, the work function expressed in joules is Wy = (4.73 eV)[(1.60 X
10" 1)/(1 eV)] = 7.57 X 1071 J. Using Equation 29.3, we find

and the Photoelectric Effect 885

KEnax of ejected electron

fo
Light frequency, f

Figure 29.5 Photons can eject
electrons from a metal when the light

- frequency is above a minimum value f;.

For frequencies above this value,
ejected electrons have a maximum
kinetic energy KE,, that is linearly
related to the frequency, as the graph
shows.

Problem solving insight
The work function of a metal is the mini-

h fo ~ KEmax + WO or ﬁ) = _W_IO_ mum energy needed to eject an electron
—— h from the metal. An electron that has re-
=0]J ceived this minimum energy has no kinetic
. i . energy once outside the metal.
Solution The minimum frequency f; is N o

i X —19
PR 10077 _ 114 x 105 Hz

h o 6.63X1073]-s

Photons with frequencies less than f do not have enough energy to eject electrons from a sil-
ver surface. Since Ao = c/fy, the wavelength of this light is Ay = 263 nm, which is in the ultra-

violet region of the electromagnetic spectrum.
~

Another significant feature of the photoelectric effect is that the maximum kinetic en-
ergy of the ejected electrons remains the same when the intensity of the light increases,
provided the light frequency remains the same. As the light intensity increases, more pho-
tons per second strike the metal, and consequently more electrons per second are ejected.
However, since the frequency is the same for each photon, the energy of each photon is
also the same. Thus, the ejected electrons always have the same maximum Kinetic energy.

Whereas the photon model of light explains the photoelectric effect satisfactorily, the
electromagnetic wave model of light does not. Certainly, it is possible to imagine that the
electric field of an electromagnetic wave would cause electrons in the metal to oscillate
and tear free from the surface when the amplitude of oscillation becomes large enough.
However, were this the case, higher-intensity light would eject electrons with a greater
maximum kinetic energy, a fact that experiment does not confirm. Moreover, in the elec-
tromagnetic wave model, a relatively long time would be required with low-intensity light
before the electrons would build up a sufficiently large oscillation amplitude to tear free.
Instead, experiment shows that even the weakest light intensity causes electrons to be
ejected almost instantaneously, provided the frequency of the light is above the minimum
value f;. The failure of the electromagnetic wave model to explain the photoelectric effect
does not mean that the wave model should be abandoned. However, we must recognize
that the wave model does not account for all the characteristics of light. The photon




29.5 The de Broglie Wavelength
and the Wave Nature of Matter

> CONCEPTS AT A GLANCE As a graduate student in 1923, Louis de Broglie
(1892—-1987) made the astounding suggestion that since light waves could exhibit parti-
cle-like behavior, particles of matter should exhibit wave-like behavior. De Broglie pro-
posed that all moving matter has a wavelength associated with it, just as a wave does. The
Concept-at-a-Glance chart in Figure 29.12, which is a continuation of the chart in Figure
29.3, shows that the notions of energy, momentum, and wavelength are applicable to par-
ticles as well as to waves. <

De Broglie made the explicit proposal that the wavelength A of a particle is given by
the same relation (Equation 29.6) that applies to a photon:

De Broglie wavelength A= % (29.8)
where h is Planck’s constant and p is the magnitude of the relativistic momentum of the
particle. Today, A is known as the de Broglie wavelength of the particle.

Confirmation of de Broglie’s suggestion came in 1927 from the experiments of the
American physicists Clinton J. Davisson (1881-1958) and Lester H. Germer (1896-
1971) and, independently, those of the English physicist George P. Thomson (1892-
1975). Davisson and Germer directed a beam of electrons onto a crystal of nickel and ob-
served that the electrons exhibited a diffraction behavior, analogous to that seen when X-
rays are diffracted by a crystal (see Section 27.9 for a discussion of X-ray diffraction)-
The wavelength of the electrons revealed by the diffraction pattern matched that predicted
by de Broglie’s hypothesis, A = h/p. More recently, Young’s double-slit experiment h?s
been performed with electrons and reveals the effects of wave interference illustrated 12
Figure 29.1.

Particles other than electrons can also exhibit wave-like properties. For instance, neu-
trons are sometimes used in diffraction studies of crystal structure. Figure 29.13 com-
pares the neutron diffraction pattern and the X-ray diffraction pattern caused by a cry$
of rock salt (NaCl).

Although all moving particles have a de Broglie wavelength, the effects of this wave-
length are observable only for particles whose masses are very small, on the order of the
mass of an electron or a neutron, for instance. Example 4 illustrates why.
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Figure 29.13 (a) The neutron diffraction pattern (Wollan, Shull and Marney, Phys. Rev. 73:527, 1948)
and (b) the X-ray diffraction pattern for a crystal of sodium chloride (NaCl). (Courtesy Edwin Jones,
University of South Carolina)

Example 4 The de Broglie Wavelength of an Electron and of a Baseball @

Determine the de Broglie wavelength for (a) an electron (mass = 9.1 X 10731 kg) moving at a
speed of 6.0 X 10° m/s and (b) a baseball (mass = 0.15 kg) moving at a speed of 13 m/s.

Reasoning In each case, the de Broglie wavelength is given by Equation 29.8 as Planck’s
constant divided by the magnitude of the momentum. Since the speeds are small compared to
the speed of light, we can ignore relativistic effects and express the magnitude of the momen-
tum as the product of the mass and the speed.

Solution
(a) Since the magnitude p of the momentum is the product of the mass m of the particle and
its speed v, we have p = mv. Using this expression in Equation 29.8 for the de Broglie wave-
length, we obtain

h h 63 X 107347

A=—=—= o I % =[12x10°m

D mo (9.1 X 10731 kg)(6.0 X 10°m/s)
A de Broglie wavelength of 1.2 X 107'° m is about the size of the interatomic spacing in a
solid, such as the nickel crystal used by Davisson and Germer, and, therefore, leads to the ob-
served diffraction effects.

(b) A calculation similar to that in part (a) shows that the de Broglie wavelength of the base-
ball is |7= 3.3 X 10~* m| This wavelength is incredibly small, even by comparison with the
size of an atom (10~1° m) or a nucleus (10~ m). Thus, the ratio /W of this wavelength to the
width W of an ordinary opening, such as a window, is so small that the diffraction of a base-
ball passing through the window cannot be observed.

The de Broglie equation for particle wavelength provides no hint as to what kind of
wave is associated with a particle of matter. To gain some insight into the nature of this
wave, we turn our attention to Figure 29.14. Part a shows the fringe pattern on the screen
when electrons are used in a version of Young’s double-slit experiment. The bright fringes
occur in places where particle waves coming from each slit interfere constructively, while
the dark fringes occur in places where the waves interfere destructively. ol ,

When an electron passes through the double-slit arrangement a'md strikes a spot on @ After 70 000 electrons
the screen, the screen glows at that spot, and parts b, ¢, and d of Figure 29.14 illustrate . )

.. ; Figure 29.14 In this electron version
how the spots accumulate in time. As more and more electrons strike the screen, the spots of Young's double-slit experiment, the
eventgally form the fI:lI.lge pattern that 1s‘ey1dent in part d. Bright frllnges occur where 4. o o ctic fringe pattern becomes
there is a high probab1.11‘ty of electrons striking the screen, apd dark fmnges occur wh'ere recognizable only after a sufficient
there is a low probability. Here lies the key to understanding particle waves. Particle  umber of electrons have struck the
waves are waves of probability, waves whose magnitude at a point in space gives an indi- - screen. (A. Tonomura, J. Endo, T. Matsuda,
cation of the probability that the particle will be found at that point. At the place where  and T. Kawasaki, Am. J. Phys. 57(2): 117,
the screen is located, the pattern of probabilities conveyed by the particle waves causes  Feb. 1989)




31.3 The Mass Defect of the Nucleus
and Nuclear Binding Energy

Because of the strong nuclear force, the nucleons in a stable nucleus are held tightly to-
gether. Therefore, energy is required to separate a stable nucleus into its constituent pro-
tons and neutrons, as Figure 31.3 illustrates. The more stable the nucleus is, the greater is
the amount of energy needed to break it apart. The required energy is called the binding
energy of the nucleus. ;

> CONCEPTS AT A GLANCE As the Concepts-at-a-Glance chart in Figure 31.4 illus-
trates, two ideas that we have studied previously come into play as we discuss the binding
energy of a nucleus. These are mass (Section 4.2) and the rest energy of an object (Sec-
tion 28.6). In Einstein’s theory of special relativity, mass and energy are equivalent. A
change Am in the mass of a system is equivalent to a change AE, in the rest energy of the
system by an amount AE; = (Am)c?, where c is the speed of light in a vacuum. Thus, in
Figure 31.3, the binding energy used to disassemble the nucleus appears as extra mass of
the separated nucleons. In other words, the sum of the individual masses of the separated
protons and neutrons is greater by an amount A than the mass of the stable nucleus. The
difference in mass Am is known as the mass defect of the nucleus. <

As Example 2 shows, the binding energy of a nucleus can be determined from the
mass defect according to Equation 31.3:

Binding energy = (Mass defect)c? = (Am)c? (31.3)

| @ 9
e o ?
Nucleus o @

(smaller mass) Separated nucleons

(greater mass)
Figure 31.3 Energy, called the
binding energy, must be supplied to
break the nucleus apart into its
constituent protons and neutrons. Each
of the separated nucleons is at rest and
out of the range of the forces of the
other nucleons.
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Figure 31.4 CONCEPTS AT A
GLANCE The mass and rest energy of
an object are equivalent, in the sense
that if one increases (or decreases), the
other does too. The binding energy of a
nucleus is the. mass of the separated
nucleons minus the mass of the intact
nucleus, expressed in units of energy.
This photograph shows NASA’s
Galileo spacecraft, which uses a
process called nuclear fission to
generate its energy. This process
depends on the fact that different nuclei
have different binding energies and is
discussed in Chapter 32. (Courtesy
NASA)

Example 2 The Binding Energy of the Helium Nucleus

The most abundant isotope of helium has a §He nucleus whose mass is 6.6447 X 10777 kg.
For this nucleus, find (a) the mass defect and (b) the binding energy.

Reasoning The symbol $He indicates that the helium nucleus contains Z = 2 protons and
N = 4 — 2 = 2 neutrons. To obtain the mass defect Am, we first determine the sum of the in-
dividual masses of the separated protons and neutrons. Then we subtract from this sum the
mass of the 4He nucleus. Finally, we use Equation 31.3 to calculate the binding energy from
the value for Am.

Solution

(a) Using data from Table 31.1, we find that the sum of the individual masses of the nucleons

is
2(1.6726 X 107%" kg) + 2(1.6749 X 102 kg) = 6.6950 X 107" kg

Two protons Two neutrons

This value is greater than the mass of the intact $He nucleus, and the mass defect is

Am = 6.6950 X 1072 kg — 6.6447 X 1072 kg = | 0.0503 X 107 k|

(b) According to Equation 31.3, the binding energy is

Binding _ (p,02 = (0.0503 X 107 kg)(3.00 X 10° m/s)> = 4.53 X 1072J
energy
Usually, binding energies are expressed in energy units of electron volts instead of joules
(1eV = 1.60 X 1071 7J):

Binding _ leV
= (4.53 X 10712J (——————
energy e ) 1.60 X 1077

>=2.83>< 107 eV = [28.3 MeV]

In this result, one million electron volts is denoted by the unit MeV. The value of 28.3 MeV is
more than two million times greater than the energy required to remove an orbital electron
from an atom.

In calculations such as that in Example 2, it is customary to use the atomic mass unit
(u) instead of the kilogram. As introduced in Section 14.1, the atomic mass unit is one-
twelfth of the mass of a 12C atom of carbon. In terms of this unit, the mass of a 12C atom
is exactly 12 u. Table 31.1 also gives the masses of the electron, the proton, and the neu-
tron in atomic mass units. For future calculations, the energy equivalent of one atomic
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mass unit can be determined by observing that the mass of a proton is 1.6726 X 1077 kg
or 1.0073 u, so that

1. x 1077
1u=ﬂw< 6726 X 10~Y kg

1.0073 u

)=L%%x1m”@

and
AE, = (Am)c? = (1.6605 X 107?7 kg)(2.9979 X 108 m/s)? = 1.4924 X 107107
In electron volts, therefore, one atomic mass unit is equivalent to

leV
1.6022 X 1077

lu= (14924 X 10710 J)< ) = 9315 X 10%eV = 931.5 MeV
Data tables for isotopes give masses in atomic mass units. Typically, however, the

given masses are not nuclear masses. They are atomic masses—that is, the masses of

neutral atoms, including the mass of the orbital electrons. Example 3 deals again with the

“4He nucleus and shows how to take into account the effect of the orbital electrons when

using such data to determine binding energies.

Example 3 The Binding Energy of the Helium Nucleus, Revisited
'

The atomic mass of He is 4.0026 u, and the atomic mass of {H is 1.0078 u. Using atomic
mass units instead of kilograms, obtain the binding energy of the 3He nucleus.

Reasoning To determine the binding energy, we calculate the mass defect in atomic mass
units and then use the fact that one atomic mass unit is equivalent to 931.5 MeV of energy.
The mass of 4.0026 u for 4He includes the mass of the two electrons in the neutral helium
atom. To calculate the mass defect, we must subtract 4.0026 u from the sum of the individual
masses of the nucleons, including the mass of the electrons. As Figure 31.5 illustrates, the
electron mass will be included if the masses of two hydrogen atoms are used in the calculation
instead of the masses of two protons. The mass of a {H hydrogen atom is given in Table 31.1
as 1.0078 u, and the mass of a neutron as 1.0087 u.

Solution The sum of the individual masses is

2(1.0078 u) + 2(1.0087 u) = 4.0330 u

Two hydrogen = Two neutrons
atoms

The mass defect is Am = 4.0330 u — 4.0026 u = 0.0304 u. Since 1 u is equivalent to 931.5 MeV,
the binding energy is I Binding energy = 28.3 MeV |, which matches that obtained in Example 2.

-
%H "0

+

?’:
%H "0

\__r—-d
Mass = 4.0026 u Mass = 4.0330 u

Figure 31.5 Data tables usually give the mass of the neutral atom (including the orbital
electrons) rather than the mass of the nucleus. When data from such tables are used to determine
the mass defect of a nucleus, the mass of the orbital electrons must be taken into account, as this
drawing illustrates for the §He isotope of helium. See Example 3.

To see how the nuclear binding energy varies from nucleus to nucleus, it is necessary
to compare the binding energy for each nucleus on a per-nucleon basis. The graph shown

943
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Figure 31.6 A plot of binding energy 0
per nucleon versus the nucleon number 0 50 100 150 200 250

A.

Nucleon number A

in Figure 31.6 shows a plot in which the binding energy divided by the nucleon number
A is plotted against the nucleon number itself. In the graph, the peak for the $He isotope
of helium indicates that the §He nucleus is particularly stable. The binding energy per nu-
cleon increases rapidly for nuclei with small masses and reaches a maximum of approxi-
mately 8.7 MeV/nucleon for a nucleon number of about A = 60. For greater nucleon
numbers, the binding energy per nucleon' decreases gradually. Eventually, the binding en-
ergy per nucleon decreases enough so there is insufficient binding energy to hold the nu-
cleus together. Nuclei more massive than the 23Bi nucleus of bismuth are unstable and
hence radioactive.
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The activity of a radioactive sample is the number of disintegrations per second
_ that occur. Each time a disintegration occurs, the number N of radioactive nuclei
decreases. As a result, the activity can be obtained by dividing AN, the change in
the number of nuclei, by At, the time interval during which the change takes place;
the average activity over the time interval Af is the magnitude of AN/Az, or | AN/A¢|.
Since the decay of any individual nucleus is completely random, the number of
disintegrations per second that occurs in a sample is proportional to the number of ra-
dioactive nuclei present, so that

AN

=== =AN (31.4)

where A is a proportionality constant referred to as the decay constant. The minus sign is
present in this equation because each disintegration decreases the number N of nuclei
originally present.

The SI unit for activity is the becquerel (Bq); one becquerel equals one disintegra-
tion per second. Activity is also measured in terms of a unit called the curie (Ci), in honor
of Marie (1867—1934) and Pierre (1859-1906) Curie, the discoverers of radium and
polonium. Historically, the curie was chosen as a unit because it is roughly the activity of
one gram of pure radium. In terms of becquerels,

1Ci = 3.70 X 10'° Bq

The activity of the radium put into the dial of a watch to make it glow in the dark is about
4 X 10* Bq, and the activity used in radiation therapy for cancer treatment is approxi-
mately a billion times greater, or 4 X 103 Bq.

The mathematical expression for the graph of N versus ¢ shown in Figure 31.15 can
be obtained from Equation 31.4 with the aid of calculus. The result for the number N of
radioactive nuclei present at time ? is

N = Nye™ (31.5)
assuming that the number at = 0 s is Ny. The exponential e has the value e =
2.718 . . . , and many calculators provide the value of e*. We can relate the half-life T},

of a radioactive nucleus to its decay constant A in the following manner. By substituting
N = INyand ¢t = T, into Equation 31.5, we find that ; = e~*7=. Taking the natural loga-
rithm of both sides of this equation reveals that In 2 = AT, or

In2 _ 0.693 (31.6)

Typ = ——
172 A A

The following example illustrates the use of Equations 31.5 and 31.6.

Example 9 The Activity of Radon 222Rn

¥ '
As in Example 8, suppose there are 3.0 X 107 radon atoms (T, = 3.83 days or 3.31 X 10%s)
trapped in a basement. (a) How many radon atoms remain after 31 days? Find the activity (b)
just after the basement is sealed against further entry of radon and (c) 31 days later.

Reasoning The number N of radon atoms remaining after a time ¢ is given by N = Noe ™,

where Ny = 3.0 X 107 is the original number of atoms when ¢ = 0 s and A is the decay con-
stant. The decay constant is related to the half-life 7}, of the radon atoms by A = 0.693/T-
The activity can be obtained from Equation 31.4, AN/At = —AN.

Solution
(a) The decay constant is

A= 0.693 _ 0693 _ 0.181 days™! (31.6)
Tin 3.83 days

and the number N of radon atoms remaining after 31 days is

N = Npe = (3.0 X 107)e- @181 daysG1 dayy = [11 x 103 (31.5)

e




This value is slightly different from that found in Example 8 because there we ignored the dif-
ference between 8.0 and 8.1 half-lives.

(b) The activity can be obtained from Equation 31.4, provided the decay constant is ex-
pressed in reciprocal seconds:

0.693 0.693
A= = =2.09 X 1076571 .
T, 331 X 10%s s (31.6)
Thus, the number of disintegrations per second is
AN
vy = —AN = —(2.09 X 1076s71)(3.0 X 107) = —63 disintegrations/s (31.4)

The activity is the magnitude of AN/At, so initially [Activity = 63 Bq |

(¢) From part (a), the number of radioactive nuclei remaining at the end of 31 days is N =
1.1 X 105, and reasoning similar to that in part (b) reveals that IXctivity =0.23 Bﬂ.

~ s

B -

31.7 Radioactive Dating

One important application of radioactivity is the determination of the age of archeological
or geological samples. If an object contains radioactive nuclei when it is formed, then the
decay of these nuclei marks the passage of time like a clock, half of the nuclei disintegrat-
ing during each half-life. If the half-life is known, a measurement of the number of nuclei
present today relative to the number present initially can give the age of the sample. Ac-
cording to Equation 31.4, the activity of a sample is proportional to the number of ra-
dioactive nuclei, so one way to obtain the age is to compare present activity with initial
activity. A more accurate way is to determine the present number of radioactive nuclei
with the aid of a mass spectrometer.

The present activity of a sample can be measured, but how is it possible to know what
the original activity was, perhaps thousands of years ago? Radioactive dating methods entail
certain assumptions that make it possible to estimate the original activity. For instance, the
radiocarbon technique utilizes the '¢C isotope of carbon, which undergoes B~ decay with a
half-life of 5730 yr. This isotope is present in the earth’s atmosphere at an equilibrium con-
centration of about one atom for every 8.3 X 10'! atoms of normal carbon ZC. It is often
assumed* that this value has remained constant over the years because '¢C is created when
cosmic rays interact with the earth’s upper atmosphere, a production method that offsets the
loss via B~ decay. Moreover, nearly all living organisms ingest the equilibrium concentra-
tion of '¢C. However, once an organism dies, metabolism no longer sustains the input of
14C, and B~ decay causes half of the '¢C nuclei to disintegrate every 5730 years. Example
10 illustrates how to determine the '4C activity of one gram of carbon in a living organism.

* The assumption that the '§C concentration has always been at its present equilibrium value has been evaluated
by comparing '¢C ages with ages determined by counting tree rings. More recently, ages determined using the
radioactive decay of uranium 33U have been used for comparison. These comparisons indicate that the
equilibrium value of the 14C concentration has indeed remained constant for the past 1000 years. However, from
there back about 30 000 years, it appears that the '¢C concentration in the atmosphere was larger than its present
value by up to 40%. As a first approximation we ignore such discrepancies.

31.7 Radioactive Dating 953

The physics of
radioactive dating.

This mummy, with a sun-bleached skull
and surrounded by burial artifacts, was
found in the arid highlands of southern
Peru. The extreme dryness helped to
preserve the remains, thought to be
around 2000 years old. Radioactive
dating is one of the techniques used to
determine the age of such artifacts.

(© David Nunuk/Photo Researchers)
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Example 10 '{C Activity Per Gram of Carbon in a Living Organism

v
(a) Determine the number of carbon '¢C atoms present for every gram of carbon 12C in a liv-
ing organism. Find (b) the decay constant and (c) the activity of this sample.

Reasoning The total number of carbon '2C atoms in one gram of carbon 'ZC is equal to the
corresponding number of moles times Avogadro’s number (see Section 14.1). Since there is
only one '4C atom for every 8.3 X 10" atoms of 'ZC, the number of '¢C atoms is equal to the
total number of '2C atoms divided by 8.3 X 10". The decay constant A for '§C is A =
0.693/T,,,, where T, is the half-life. The activity is equal to the magnitude of AN/Az, which is
equal to the decay constant times the number of '¢C atoms present, according to Equation 31.4.

Solution

(a) One gram of carbon '2C (atomic mass = 12 u) is equivalent to 1.0/12 mol. Since Avo-
gadro’s number is 6.02 X 10%* atoms/mol and since there is one '§C atom for every 8.3 X
10" atoms of 12C, the number of '¢C atoms is

Number of %¢C

atoms forevery 1.0 _ ( 1.0 »3 _atoms 1
gram of carbon 2C ( 12 m01> (6'02 X107 ol J\ B3 x 107

= |6.0 X 10'° atoms 1

(b) Since the half-life of '¢C is 5730 yr (1.81 X 10" s), the decay constant is

0693 0.693
T, 181 X 10

(¢) Equation 31.4 indicates that AN/At = —AN, so the magnitude of AN/At is AN.
Activity of %¢C for

every 1.0 gramof _ _ 12 -1 10 _
carbon 2C in a AN = (3.83 X 10712571)(6.0 X 10'° atoms) 0.23 Bq

living organism

A =[3.83 x 1071257! (31.6)

An organism that lived thousands of years ago presumably had an activity of about
0.23 Bq per gram of carbon. When the organism died, the activity began decreasing.
From a sample of the remains, the current activity per gram of carbon can be measured
and compared to the value of 0.23 Bq to determine the time that has transpired since
death. This procedure is illustrated in Example 11.

Example 11 The lceman

On 19 September 1991, German tourists on a walking trip in the Italian Alps found a Stone
Age traveler, later called the Iceman, whose body had become trapped in a glacier. Figure
31.16 shows the well-preserved remains that were dated using the radiocarbon method. Mater-
ial found with the body had a '¢C activity of about 0.121 Bq per gram of carbon. Find the age
of the Iceman’s remains.

Reasoning According to Equation 31.5, the number of nuclei remaining at time ¢ is N =
Nye ™. Multiplying both sides of this expression by the decay constant A and recognizing that
the product of A and N is the activity A, we find that A = Age™™, where Ay = 0.23 Bq is the ac-
tivity at time ¢ = O s for one gram of carbon. The decay constant A can be determined from the
value of 5730 yr for the half-life of '¢C, using Equation 31.6. With known values for Ao and A,
the given activity of A = 0.121 Bq per gram of carbon can be used to find 7, the Iceman’s age.

Solution For '4C, the decay constant is A = 0.693/Ty, = 0.693/(5730 yr) = 1.21 X

10~*yr~'. Since A = 0.121 Bq and A, = 0.23 Bq, the age can be determined from
A = 0.121 Bq = (0.23 Bq)e~(121X107»x

Taking the natural logarithm of both sides of this result gives

Figure 31.16 These remains of the

0.121Bq | _ o i
Iceman were discovered in the ice of a 1 ( > = —(1.21 X 10 yr ')t
lacier in the Italian Alps in 1991 023 Bq
glacier in the Italian Alps in . ) )
Radiocarbon dating reveals his age (see which gives an age for the sample of | £ = 5300 yr |
Example 11). (© Corbis Sygma) A - —




