PHYS 1301 IDEAS OF MODERN PHYSICS

Relativity Test

The following are practice questions for the test. You will need a simple calculator in the test (phones
not accepted). Appended to this document is self-study material to help you master the problems.

The following formulas will be given on the test paper:

At,
At= 2,2 2,2 VaE T VEB
1-ve/c L:LO\/I_(V /C ) \/AB:ﬁ
1+ VaeVEB
o2
2
L B c=3x108m/s

(m is rest mass)
1. Time Dilation

1.1 Mars rotates about its axis once every 88 642 s. A spacecraft comes into the solar system
and heads directly toward Mars at a speed of 0.800c. What is the rotational period of Mars
according to the beings on the spaceship?

[148 000 s]

1.2 A bomb is designed to explode 2.00 s after it is armed. The bomb is launched from earth
and accelerated to an unknown final speed. After reaching its final speed, however, the bomb
is observed by people on earth to explode 4.25 s after it is armed. What is the final speed
of the bomb just before it explodes?

(0. 882¢]

galaxy
0.995¢ i

—_—

) - 50.0 light years -

1.3 The figure shows a side view of a galaxy that is 50.0 light vears in diameter (it takes
light 50 years to cross it according to someone at rest in the galaxy). A spaceship enters
the galactic plane with speed 0.995c relative to the galaxy. Assume that the galaxy can be
treated as an inertial reference frame. How long does it take the spaceship to cross the
galaxy according to a clock on board the spaceship?

[5.02 years]



2. Length Contraction

2.1 A meter stick is observed to be only 0.900 meters long to an inertial observer. At what
speed, relative to the observer, must the meter stick be moving?
[1.31 x10® m/s]

2.2 In question 1.3, determine the diameter of the galaxy as perceived by a person in the
spaceship.
[4.99 light years]

10 m

e | () =

2.3 A cubic asteroid with side length 10.0 m is in an inertial reference frame. A rocket ship
moves along one side of the asteroid as shown in the figure with speed 0.80c relative to the
asteroid. An astronaut in the rocket ship measures the volume of the asteroid. What volume
does the astronaut measure?

(600 m’]

3. Energy

3.1 A muon particle has rest energy 105 MeV (energy unit 1 MeV = 1.6 x 10" J). What is its
kinetic energy when its speed is 0.95¢?
[231 MeV]

3.2 The average power output of a nuclear power plant is 500 Mega Watts, meaning it produces
energy at a rate of 500 x 10° J/s. In one minute, what is the change in the mass of the
nuclear fuel due to the energy being taken from the nuclear reactor? (Assume 100% efficiency).
[3.3 x 107 kg]

3.3 During each hour of flight, a large jet airplane consumes 3330 gallons of fuel via
combustion. Combustion releases 1.2 x 10° Joules/gallon. One gallon of fuel has a mass of 2.84
kg. Calculate the energy equivalent of 3330 gallons of fuel and determine the ratio (in

percent) of this energy equivalent to the amount of energy released by combustion in one hour
of flight.
[4.69 x 107 %]



4. Relative Velocity

4.1 Two rockets, Aand B, travel toward each other with speeds 0.5crelative to an inertial
observer.

0.5¢ 0.5¢
—_— e —
A B
 ——— S —

inertial
observer

Determine the speed of rocket Arelative to rocket B.
[0. 8¢c]

4.2 A starship approaches Earth at a speed of 0.8crelative to the planet. On

the way, it overtakes a freight ship. The relative speed of the two ships as measured by the
navigator on the starship is 0.5c. At what speed is the freight ship approaching the

planet?

[0. 5¢]

4.3 Astronomers on Earth, an inertial reference frame, observe galaxies A and B that are
moving away from the Earth as shown. The speeds indicated are those measured by the
astronomers on Earth. What is the speed of galaxy B as measured by an observer in galaxy A?

0.82¢ 0.60¢
A — > © L — ey

Galg}' A Earth Galaxy B
[0. 95¢]
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28.3 The Relativity of Time: Time Dilation 859

iR Vo can see how this curious effect arises with the help of the clock
illustrated in Figure 28.4, which uses a pulse of light to mark time. A short pulse of light
is emitted by a light source, reflects from a mirror, and then strikes a detector that is situ-
ated next to the source. Each time a pulse reaches the detector, a “tick” registers on the
chart recorder, another short pulse of light is emitted, and the cycle repeats. Thus, the
time interval between successive “ticks” is marked by a beginning event (the firing of the
light source) and an ending event (the pulse striking the detector). The source and detec-
tor are so close to each other that the two events can be considered to occur at the same
location.

Suppose two identical clocks are built. One is kept on earth, and the other is
placed aboard a spacecraft that travels at a constant velocity relative to the earth. The
astronaut is at rest with respect to the clock on the spacecraft and, therefore, sees the
light pulse move along the up/down path shown in Figure 28.5a. According to the astro-
naut, the time interval At required for the light to follow this path is the distance 2D
divided by the speed of light ¢; Az, = 2D/c. To the astronaut, At is the time interval
between the “ticks” of the spacecraft clock—that is, the time interval between the begin-
ning and ending events of the clock. An earth-based observer, however, does not measure
Aty as the time interval between these two events. Since the spacecraft is moving, the
earth-based observer sees the light pulse follow the diagonal path shown in red in part b
of the drawing. This path is longer than the up/down path seen by the astronaut. But light
travels at the same speed c for both observers, in accord with the speed of light postulate.
Therefore, the earth-based observer measures a time interval Az between the two events
that is greater than the time interval A, measured by the astronaut. In other words, the
earth-based observer, using his own earth-based clock to measure the performance of the
astronaut’s clock, finds that the astronaut’s clock runs slowly. This result of special rela-
tivity is known as time dilation. (To dilate means to expand, and the time interval Az is
“expanded” relative to Az,.)

The time interval A that the earth-based observer measures in Figure 28.5b can be
determined as follows. While the light pulse travels from the source to the detector, the
spacecraft moves a distance 2L = vAt to the right, where v is the speed of the spacecraft
relative to the earth. From the drawing it can be seen that the light pulse travels a total di-
agonal distance of 2s during the time interval Az. Applying the Pythagorean theorem, we
find that

2
25=20D* + =2 D2+<U§t>

But the distance 2s is also equal to the speed of light times the time interval Af, so 2s =

¢ At. Therefore, -
cAt=2 \’D2 + (——vat>
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Figure 28.4 A light clock.

Figure 28.5 (a) The astronaut
measures the time interval Az, between
successive “ticks” of his light clock.
(b) An observer on earth watches the
astronaut’s clock and sees the light
pulse travel a greater distance between
“ticks” than it does in part a. Conse-
quently, the earth-based observer
measures a time interval Az between
“ticks” that is greater than Af,.
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Squaring this result and solving for Az gives

2D
ar=2 L

But 2D/c = At,, the time interval between successive “ticks” of the spacecraft’s clock as
measured by the astronaut. With this substitution, the equation for At can be expressed as

Time _
Elihian At = —— (28.1)

The symbols in this formula are defined as follows:

Aty = proper time interval, which is the interval between two events as measured by an
observer who is at rest with respect to the events and who views them as occurring
at the same place

At = dilated time interval, which is the interval measured by an observer who is in mo-
tion with respect to the events and who views them as occurring at different places

v = relative speed between the two observers
¢ = speed of light in a vacuum

For a speed v that is less than c, the term V1 — v%c? in Equation 28.1 is less than 1, and
the dilated time interval At is greater than A, Example 1 shows this time dilation effect.

Example 1 Time Dilation

WV
The spacecraft in Figure 28.5 is moving past the earth at a constant speed v that is 0.92 times
the speed of light. Thus, v = (0.92)(3.0 X 10® m/s), which is often written as v = 0.92¢. The
astronaut measures the time interval between successive “ticks” of the spacecraft clock to be
Aty = 1.0 s. What is the time interval At that an earth observer measures between “ticks” of
the astronaut’s clock?

Reasoning Since the clock on the spacecraft is moving relative to the earth observer, the
earth observer measures a greater time interval Ar between “ticks” than does the astronaut,
who is at rest relative to the clock. The dilated time interval Az can be determined from the
time dilation relation, Equation 28.1.

Solution The dilated time interval is
At :
e
v? 0.92¢ \? )
1 —— 1-
c c

From the point of view of the earth-based observer, the astronaut is using a clock that is run-
ning slowly, because the earth-based observer measures a time between “ticks” that is longer
(2.6 s) than what the astronaut measures (1.0 s).

A

Present-day spacecrafts fly nowhere near as fast as the craft in Example 1. Yet

circumstances exist in which time dilation can create appreciable errors if not accounted

The physics of for. The Global Positioning System (GPS), for instance, uses highly accurate and stable ;
the Global Positioning System and atomic clocks on board each of 24 satellites orbiting the earth at speeds of about '
special relativity. 4000 m/s. These clocks make it possible to measure the time it takes for electromagnetic 1
waves to travel from a satellite to a ground-based GPS receiver. From the speed of light

and the times measured for signals from three or more of the satellites, it is possible to 10- i

cate the position of the receiver (see Section 5.5). The stability of the clocks must be bet-

ter than one part in 10'3 to ensure the positional accuracy demanded of the GPS. Using

Equation 28.1 and the speed of the GPS satellites, we can calculate the difference be- ‘

tween the dilated time interval and the proper time interval as a fraction of the propet 1
time interval and compare the result to the stability of the GPS clocks:
At — Aty 1 1= 1 1
Aty 1 — v¥e? V1 — (4000 m/s)¥(3.00 X 10% m/s)?

I S
1.1 X 10
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This result is approximately one thousand times greater than the GPS-clock stability of
one part in 10", Thus, if not taken into account, time dilation would cause an error in the
measured position of the earth-based GPS receiver roughly equivalent to that caused by a
thousand-fold degradation in the stability of the atomic clocks.

PROPER TIME INTERVAL

In Figure 28.5 both the astronaut and the person standing on the earth are measur-
ing the time interval between a beginning event (the firing of the light source) and
an ending event (the light pulse striking the detector). For the astronaut, who is at
rest with respect to the light clock, the two events occur at the same location.
(Remember, we are assuming that the light source and detector are so close
together that they are considered to be at the same place.) Being at rest with respect
to a clock is the usual or “proper” situation, so the time interval Aty measured by the
astronaut is called the proper time interval. In general, the proper time interval Ag,
between two events is the time interval measured by an observer who is at rest relative
to the events and sees them at the same location in space. On the other hand, the earth-
based observer does not see the two events occurring at the same location in space, since
the spacecraft is in motion. The time interval At that the earth-based observer measures
is, therefore, not a proper time interval in the sense that we have defined it.

To understand situations involving time dilation, it is essential to distinguish between
Aty and Az. It is helpful if one first identifies the two events that define the time interval.
These may be something other than the firing of a light source and the light pulse striking
a detector. Then determine the reference frame in which the two events occur at the sare
place. An observer at rest in this reference frame measures the proper time interval Az,.

SPACE TRAVEL

One of the intriguing aspects of time dilation occurs in conjunction with space travel.
Since enormous distances are involved, travel to even the closest star outside our solar
system would take a long time. However, as the following example shows, the travel time
can be considerably less for the passengers than one might guess.

Example 2 Space Travel

_'
Alpha Centauri, a nearby star in our galaxy, is 4.3 light-years away. This means that, as mea-
sured by a person on earth, it would take light 4.3 years to reach this star. If a rocket leaves for
Alpha Centauri and travels at a speed of v = 0.95¢ relative to the earth, by how much will the
passengers have aged, according to their own clock, when they reach their destination? As-
sume that the earth and Alpha Centauri are stationary with respect to one another.

Reasoning The two events in this problem are the departure from earth and the arrival
at Alpha Centauri. At departure, earth is just outside the spaceship. Upon arrival at the des-
tination, Alpha Centauri is just outside. Therefore, relative to the passengers, the two
events occur at the same place—namely, just outside the spaceship. Thus, the pas-
sengers measure the proper time interval Az, on their clock, and it is this interval that
we must find. For a person left behind on earth, the events occur at different places, so
such a person measures the dilated time interval At rather than the proper time interval.
To find Az we note that the time to travel a given distance is inversely proportional
to the speed. Since it takes 4.3 years to traverse the distance between ecarth and
Alpha Centauri at the speed of light, it would take even longer at the slower speed of
0 =0.95c. Thus, a person on earth measures the dilated time interval to be Az =
(4.3 years)/0.95 = 4.5 years. This value can be used with the time-dilation equation to find the
proper time interval Az,

Solution Using the time-dilation equation, we find that the proper time interval by which the
passengers judge their own aging is

v? 0.95¢ \?
Aty=At\|1 — — =45 S 1—( ) = | 1.4 years
N

Thus, the people aboard the rocket will have aged by only 1.4 years when they reach Alpha
Centauri, and not the 4.5 years an earthbound observer has calculated.

A
A

!

Shown here in orbit is astronaut Lee
M. E. Morin on April 13, 2002, as he
works on the International Space
Station. His feet are secured to the end
of the station’s robotic arm. (© AP/Wide
World Photos)

The physics of
space travel and special relativity.

Problem solving insight

In dealing with time dilation, decide which
interval is the proper time interval as fol-
lows: (1) Identify the two events that de-
fine the interval. (2) Determine the refer-
ence frame in which the events occur at
the same place; an observer at rest in this
frame measures the proper time interval
Aty
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VERIFICATION OF TIME DILATION

A striking confirmation of time dilation was achieved in 1971 by an experiment carried oy
by J. C. Hafele and R. E. Keating.* They transported very precise cesium-beam atomic clocks
around the world on commercial jets. Since the speed of a jet plane is considerably less thay
¢, the time-dilation effect is extremely small. However, the atomic clocks were accurate to
about £10~° s, so the effect could be measured. The clocks were in the air for 45 hours, apg
their times were compared to reference atomic clocks kept on earth. The experimental resy]tg
revealed that, within experimental error, the readings on the clocks on the planes were differ.
ent from those on earth by an amount that agreed with the prediction of relativity.

The behavior of subatomic particles called muons provides additional confirmatiop L
of time dilation. These particles are created high in the atmosphere, at altitudes of about
10 000 m. When at rest, muons exist only for about 2.2 X 107 s before disintegrating, Wit
such a short lifetime, these particles could never make it down to the earth’s surface, even tray- 2.
eling at nearly the speed of light. However, a large number of muons do reach the earth, The
only way they can do so is to live longer because of time dilation, as Example 3 illustrates,

; Bex
Example 3  The Lifetime of a Muon me
- . 6 . vio
The average lifetime of a muon at rest is 2.2 X 107 s. A muon created in the upper atmos- tak
phere, thousands of meters above sea level, travels toward the earth at a speed of v = 0.998c. h )
Find, on the average, (a) how long a muon lives according to an observer on earth, and (b) ¢
how far the muon travels before disintegrating. - afe
ear
Reasoning The two events of interest are the generation and subsequent disintegration of the bot
muon. When the muon is at rest, these events occur at the same place, so the muon’s average twe
(at rest) lifetime of 2.2 X 1076 s is a proper time interval A#,. When the muon moves at a tin:
speed v = 0.998c relative to the earth, an observer on the earth measures a dilated lifetime Az " ti
that is given by Equation 28.1. The average distance x traveled by a muon, as measured by an
earth observer, is equal to the muon’s speed times the dilated time interval. iy
5 yea
Solution ‘ A
(a) The observer on earth measures a dilated lifetime given by alsc
Problem solving insight At 2.2 X 1075 one
The proper time interval A{, is always At = . = > =135 X 10"%s (28.1)
shorter than the dilated time interval At. A\/ ] v? ,\/ 1 < 0.998¢ )2 con
. P a the
(b) The distance traveled by the muon before it disintegrates is tim
v ==
x=1vAt=(0.998)(3.00 X 10*m/s)(35 X 10~¢s) = (1.0 X 10°m thes
Thus, the dilated, or extended, lifetime provides sufficient time for the muon to reach the sur- pas
face of the earth. If its lifetime were only 2.2 X 107 s, a muon would travel only 660 m be- spe
fore disintegrating and could never reach the earth. con

Lz

. . snlt
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rth. The R required to make the trip is Az. (b)
- Length CO ntractlo n According to the passenger on the
spacecraft, the earth and Alpha
Because of time dilation, observers moving at a constant velocity relative to each other  Centauri move with speed v relative to
measure different time intervals between two events. For instance, Example 2 in the pre- the craft. The passenger measures the
T vious section illustrates that a trip from earth to Alpha Centauri at a speed of v = 0.95¢  distance and time of the trip to be L and
; gggi takes 4.5 years according to a clock on earth, but only 1.4 years according to a clock in ~ Afo, respectively, both quantities being
ar; a (bj the rocket. These two times differ by the factor V1 — v%c?. Since the times for the trip ~less than those in part a.
are different, one might ask whether the observers measure different distances between
earth and Alpha Centauri. The answer, according to special relativity, is yes. After all,
n of the both the earth-based observer and the rocket passenger agree that the relative speed be-
avctdge tween the rocket and earth is v = 0.95c¢. Since speed is distance divided by time and the
-‘t,ierflj[Ai time is different for the two observers, it follows that the distances must also be different,
s by i if the relative speed is to be the same for both individuals. Thus, the earth observer deter-
mines the distance to Alpha Centauri to be L, = vAt = (0.95¢)(4.5 years) = 4.3 light-
years. On the other hand, a passenger aboard the rocket finds the distance is only L =
vAty = (0.95¢)(1.4 years) = 1.3 light-years. The passenger, measuring the shorter time,
also measures the shorter distance. This shortening of the distance between two points is
one example of a phenomenon known as length contraction.
(28.1) The relation between the distances measured by two observers in relative motion at a
constant velocity can be obtained with the aid of Figure 28.6. Part a of the drawing shows
the situation from the point of view of the earth-based observer. This person measures the
time of the trip to be A¢, the distance to be Ly, and the relative speed of the rocket to be
v = Ly/At. Part b of the drawing presents the point of view of the passenger, for whom
the rocket is at rest, and the earth and Alpha Centauri appear to move by at a speed v. The
the sur- passenger determines the distance of the trip to be L, the time to be A#,, and the relative
0 m be- speed to be v = L/A¢t,. Since the relative speed computed by the passenger equals that
computed by the earth-based observer, it follows that v = L/At, = Ly/At. Using this re-
R sult and the time-dilation equation, Equation 28.1, we obtain the following relation be-
tween L and Ly:
nts is Length ) L=Ly\|1-— —Zi (28.2)
nter- contraction c?
s who
nthe The length L is called the proper length; it is the length (or distance) between two points
vho is as measured by an observer at rest with respect to them. Since v is less than ¢, the term
: V1 — v%/c? is less than 1, and L is less than L. It is important to note that this length con-
inbe traction occurs only along the direction of the motion. Those dimensions that are perpen-
2 dicular to the motion are not shortened, as the next example discusses.
I
B Example 4 The Contraction of a Spacecraft
v
B An astronaut, using a meter stick that is at rest relative to a cylindrical spacecraft, measures
the length and diameter of the spacecraft to be 82 and 21 m, respectively. The spacecraft
s” moves with a constant speed of v = 0.95¢ relative to the earth, as in Figure 28.6. What are the
dimensions of the spacecraft, as measured by an observer on earth?

d ,
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Reasoning The length of 82 m is a proper length L, since it is measured using a meter stick
that is at rest relative to the spacecraft. The length L measured by the observer on earth cap be
determined from the length-contraction formula, Equation 28.2. On the other hand, the diame.
ter of the spacecraft is perpendicular to the motion, so the earth observer does not measyre any
change in the diameter.

Solution The length L of the spacecraft, as measured by the observer on earth, is

. Problem solving insight 2 0.95¢ \2
The proper length L is always larger than L=1L, \,1 = 'IJ_2 = (82 m) \’1 = ( 2 C) =
the contracted length L. ¢ ¢

Both the astronaut and the observer on earth measure the same value for the diameter of the

spacecraft: I Diameter = 21 m ] Figure 28.6a shows the size of the spacecraft as measured by
the earth observer, and part b shows the size measured by the astronaut.

W

When dealing with relativistic effects we need to distinguish carefully between
the criteria for the proper time interval and the proper length. The proper time interva]
At, between two events is the time interval measured by an observer who is at rest
relative to the events and sees them occurring at the same place. All other moving
inertial observers will measure a larger value for'this time interval. The proper length

' Ly of an object is the length measured by an observer who is at rest with respect to
the object. All other moving inertial observers will measure a shorter value for this
length. The observer who measures the proper time interval may not be the same one
who measures the proper length. For instance, Figure 28.6 shows that the astro-
naut measures the proper time interval A, for the trip between earth and Alpha Centauri,

. whereas the earth-based observer measures the proper length (or distance) L, for
. the trip. _

It should be emphasized that the word “proper” in the phrases proper time and
proper length does not mean that these quantities are the correct or preferred quantities
in any absolute sense. If this were so, the observer measuring these quantities would
be using a preferred reference frame for making the measurement, a situation that is
prohibited by the relativity postulate. According to this postulate, there is no preferred
inertial reference frame. When two observers are moving relative to each other at a
constant velocity, each measures the other person’s clock to run more slowly than
his own, and each measures the other person’s length, along that person’s motion, to be
‘contracted.




28.6 The Equivalence of Mass and Energy
THE TOTAL ENERGY OF AN OBJECT

One of the most astonishing results of special relativity is that mass and energy are equiv-
alent, in the sense that a gain or loss of mass can be regarded equally well as a gain or
loss of energy. Consider, for example, an object of mass m traveling at a speed v. Einstein
showed that the fotal energy E of the moving object is related to its mass and speed by

Figure 28.8 The Stanford three-

kilometer linear accelerator accelerates the followmg Elarion;

electrons almost to the speed of light. Total energy E = mc? (28.4)

(© Bill Marsh/Photo Researchers) of an object : - :
1~- —Z.T

To gain some understanding of Equation 28.4, consider the special case in which the
object is at rest. When v = 0 m/s, the total energy is called the 7est energy E,, and Equa-
tion 28.4 reduces to Einstein’s now-famous equation:

Rest energy

o,
of an object Eo = mc (28.5)

The rest energy represents the energy equivalent of the mass of an object at rest. As Ex-
ample 6 shows, even a small mass is equivalent to an enormous amount of energy.

Example 6 The Energy Equivalent of a Golf Ball

A 0.046-kg golf ball is lying on the green. (a) Find the rest energy of the golf ball. (b) If this
rest energy were used to operate a 75-W light bulb, for how many years could the bulb stay on?

Reasoning The rest energy E, that is equivalent to the mass m of the golf ball is found from
the relation Ey = mc?. The power used by the bulb is 75 W, which means that it consumes 75 J
of energy per second. If the entire rest energy of the ball were available for use, the bulb could
stay on for a time equal to the rest energy divided by the power.

Solution ‘

(a) The rest energy of the ball is

Ey = mc? = (0.046 kg)(3.0 X 108 m/s)* = |4.1 X 1015 ] (285)

(b) This rest energy can keep the bulb burning for a time ¢ given by

t; Restenergy 4.1 X 10P°]

= 5.5 X 108 6.10b)
Power I5W 2 s ¢

Since one year contains 3.2 X 107 s, we find [t = 1.7 X 108 yr I, or 1.7 million years!
e comaal

When an object is accelerated from rest to a speed v, the object acquires kinetic en(;
ergy in addition to its rest energy. The total energy E is the sum of the rest energy Eo 21
the kinetic energy KE, or E = E, + KE. Therefore, the kinetic energy is the differenc®
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between the object’s total energy and its rest energy. Using Equations 28.4 and 28.5, we
can write the kinetic energy as

1
KE=E — Ey=me? [ —— — 1 (28.6)

2
-
c
This equation is the relativistically correct expression for the kinetic energy of an object
of mass m moving at speed v.

Equation 28.6 looks nothing like the kinetic energy expression introduced in Chapter
6—namely, KE = %mvz. However, for speeds much less than the speed of light (v << ¢),
the relativistic equation for the kinetic energy reduces to KE = %mvz, as can be seen by
using the binomial expansion* to represent the square root term in Equation 28.6:

1 1 ( 272> 3 ( v? )2
—_— =1+ — = ot — — +
02 2 \c 8 \c
1 — i
o2

Suppose v is much smaller than c—say v = 0.01c. The second term in the expansion has
the value 3(v%c?) = 5.0 X 1075, while the third term has the much smaller value
2(v*/c?? = 3.8 X 107°. The additional terms are smaller still, so if v << ¢, We can ne-
glect the third and additional terms in comparison with the first and second terms. Substi-
tuting the first two terms into Equation 28.6 gives

which is the familiar form for the kinetic energy. However, Equation 28.6 gives the cor-
rect kinetic energy for all speeds and must be used for speeds near the speed of light, as in
R Example 7.

Example 7 A High-Speed Electron

'
) An electron (m = 9.109 X 107! kg) is accelerated from rest to a speed of v = 0.9995c¢ in a
particle accelerator. Determine the electron’s (a) rest energy, (b) total energy, and (c) kinetic
energy in millions of electron volts or MeV. ‘

Reasoning and Solution

(a) The electron’s rest energy is

Ey = mc* = (9.109 X 1073 kg)(2.998 X 108 m/s)? = 8.187 X 10~1*J (28.5)

s Since 1 eV = 1.602 X 107" J, the electron’s rest energy is
?
(8.187 X 10714 ) ($~—> =[511X 10°eV or 0511 MeV
'J‘ 1.602 X 107197
d (b) The total energy of an electron traveling at a speed of v = 0.9995¢ is
% 9.109 X 107 kg)(2.998 X 10®m/s)?2
Eoell .t = ) (284)
v? ( 0.9995¢ )2
\fl -— i — [

c c

) =[259 X 10°2J or 162 MeV|

(¢) The kinetic energy is the difference between the total energy and the rest energy:
) KE=E—-E;=259X10712] — 82X 1074J (28.6)
=251 X 1072 or 15.7 MeV|

For comparison, if the kinetic energy of the electron had been calculated from %mvz, a value

- of only 0.26 MeV would have been obtained.
> A
-
d * The binomial expansion states that (1 — xj" =1—rnx+n(n— 1)x%2 + ---.In our case, x = v¥c? and
© n=—1/2.
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Since mass and energy are equivalent, any change in one is accompanied by a corye.
sponding change in the other. For instance, life on earth is dependent on electromagnetic
energy (light) from the sun. Because this energy is leaving the sun (see Figure 28.9), there
is a decrease in the sun’s mass. Example 8 illustrates how to determine this decrease.

Example 8 The Sun Is Losing Mass

The sun radiates electromagnetic energy at the rate of 3.92 X 10% W. (a) What is the change
in the sun’s mass during each second that it is radiating energy? (b) The mass of the sun ig
1.99 X 10 kg. What fraction of the sun’s mass is lost during #human lifetime of 75 years?
Visiblelight image. Reasoning Since 1 W = 1 J/s, the amount of electromagnetic energy radiated during each
second is 3.92 X 10% J. Thus, during each second, the sun’s rest energy decreases by thig
amount. The change AE, in the sun’s rest energy is related to the change Am in its mass by
AE, = (Am)c?, according to Equation 28.5.

Solution )
(a) For each second that the sun radiates energy, the change in its mass is

2 e B
= - =436 x 10°k
Am == = 3,00 X 10° m/s)? g

Over 4 billion kilograms of mass are lost by the sun during each second.

(b) The amount of mass lost by the sun in 75 years is

X-ray image.

7
Figure 28.9 The sun emits Am = (4.36 X 10° kg/s) (M—lo—S) (75 years) = 1.0 X 10" kg
electromagnetic energy over a broad 1 year
portion of the electromagnetic Although this is an enormous amount of mass, it represents only a tiny fraction of the sun’s to-
spectrum. These photographs were tal mass: _
obtained using that energy in the Am 1.0 X 10¥ kg —
indicated regions of the spectrum. (Top " = 1.99 X 10¥ kg =
photo: © Mark Marten/NASA/Photo. e sun :
Researchers; bottom photo: Dr. Leon
Golub/Photo Researchers)

Any change in the energy of a system causes a change in the mass of the system ac-
cording to AE, = (Am)c2. It does not matter whether the change in energy is due to a
change in electromagnetic energy, potential energy, thermal energy, or so on. Although

_ any change in energy gives rise to a change in mass, in most instances the change in mass
is too small to be detected. For instance, when 4186 J of heat is used to raise the tempera-
ture of 1 kg of water by 1 C°, the mass changes by only Am = AEy/c? = (4186 J)/
(3.00 X 10® m/s)? = 4.7 X 10~ kg. Conceptual Example 9 illustrates further how 2
change in the energy of an object leads to an equivalent change in its mass.
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Figure 28.11 The truck is
approaching the ground-based observer
at a relative velocity of vrg = +15 m/s.
The velocity of the baseball relative to
the truck is vgr = +8.0 m/s.

28.7 The Relativistic Addition of Velocities

The velocity of an object relative to an observer plays a central role in special relativity,
and to determine this velocity, it is sometimes necessary to add two or more velocities to.
gether. We first encountered relative velocity in Section 3.4, so we will begin by review.-
ing some of the ideas presented there. Figure 28.11 illustrates a truck moving at a cop.
stant velocity of vyg = +15 m/s relative to an observer standing on the ground, where
the plus sign denotes a direction to the right. Suppose someone on the truck throws a
baseball toward the observer at a velocity of vgr = +8.0 m/s relative to the truck. We
might conclude that the observer on the ground sees the ball approaching at a velocity of
Usg = Upr + Urg = 8.0 m/s + 15 m/s = +23 m/s. These symbols are similar to those
used in Section 3.4 and have the following meaning:

v[sg] = velocity of the | Baseball | relative to the = +23m/s
uret) = velocity of the | Baseball | relative to the = +8.0m/s
U[tg] = velocity of the relative to the = +15.0m/s

Although the result that vpg = +23m/s seems reasonable, careful measurements would
show that it is not quite right. According to special relativity, the equation
Upg = Upr + Urg is not valid for the following reason. If the velocity of the truck had a
magnitude sufficiently close to the speed of light, the equation would predict that the ob-
server on the earth could see the baseball moving faster than the speed of light. This is not
possible, since no object with a finite mass can move faster than the speed of light.

For the case where the truck and ball are moving along the same straight line, the
theory of special relativity reveals that the velocities are related according to

Upr + U1

Upg =
VpT?¥
1+ BTZTG
c
The subscripts in this equation have been chosen for the specific situation shown in Fig-
ure 28.11. For the general situation, the relative velocities are related by the velocity-

addition formula:

Joci Upac T 0
Velo.c:lty Uap = AC CB (28.8)
addition VacUch
1+—=5
c

where all the velocities are assumed to be constant and the symbols have the following

meanings:
v[ag] = velocity of Vrelative to
U[ac] = velocity of relative to
U[cp] = velocity of relative to

The ordering of the subscripts in Equation 28.8 follows the discussion in Section 3.4. For
motion along a straight line, the velocities can have either positive or negative values, de-
pending on whether they are directed along the positive or negative direction. Further-
more, switching the order of the subscripts changes the sign of the velocity, so, for exam-
ple, vga = —v,p (see Example 11 in Chapter 3).

Equation 28.8 differs from the nonrelativistic formula (vsg = Usc + Ucp) bY the
presence of the v,c0cg/c? term in the denominator. This.term arises because of the effects

vgr = +8.0 m/s
% 0

vrg=+15m/s
e

Ground-based
observer
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of time dilation and length contraction that occur in special relativity. When v, and veg
are small compared to ¢, the v5cvcg/c? term is small compared to 1, so the velocity-addi-

ity, tion formula reduces to v g = Ve + Ucg. However, when either v ¢ or v is compara-
to- ble to c, the results can be quite different, as Example 10 illustrates.

2w

on- Example 10 The Relativistic Addition of Velocities

ere . v
S a Imagine a hypothetical situation in which the truck in Figure 28.11 is moving relative to the
We ground with a velocity of vyg = +0.8c. A person riding on the truck throws a baseball at a ve-

7 of locity relative to the truck of vgy = +0.5¢. What is the velocity vpg of the baseball relative to
ose a person standing on the ground?

Reasoning The observer on the ground does not see the baseball approaching at vgg =
0.5¢ + 0.8¢ = 1.3c. This cannot be because the speed of the ball would then exceed the speed
of light. The velocity-addition formula gives the correct velocity, which has a magnitude less

than the speed of light.

Solution The ground-based observer sees the ball approaching with a velocity of
uld UBT EE (% Ve 0.5¢ + 0.8¢
: Unp = = = 10.93¢ 28.8
ion 5o ViV (0.5¢)(0.8¢) 0.93¢] 8

1 +—— 1 +—

da c? c?
ob- A

not
Example 10 discusses how the speed of a baseball is viewed by observers in different in-

the ertial reference frames. The next example deals with a similar situation, except that the
baseball is replaced by the light of a laser beam.

Conceptual Example 11 The Speed of a Laser Beam

Figure 28.12 shows an intergalactic cruiser approaching a hostile spacecraft. The velocity of
3 the cruiser relative to the spacecraft is vcg = +0.7¢. Both vehicles are moving at a constant

ig— velocity. The cruiser fires a beam of laser light at the enemy. The velocity of the laser beam
relative to the cruiser is v = +c. (a) What is the velocity of the laser beam v g relative to the
renegades aboard the spacecraft? (b) At what velocity do the renegades aboard the spacecraft
3.8) see the laser beam move away from the cruiser?

Reasoning and Solution

(a) Since both vehicles move at a constant velocity, each constitutes an inertial reference
ing frame. According to the speed of light postulate, all observers in inertial reference frames
measure the speed of light in a vacuum to be ¢. Thus, the renegades aboard the hostile space-
craft see the laser beam travel toward them at the speed of light, even though the beam is emit-
ted from the cruiser, which itself is moving at seven-tenths the speed of light.

(b) The renegades aboard the spacecraft see the cruiser approach them at a relative velocity of
vcs = +0.7¢, and they also see the laser beam approach them at a relative velocity of v g =
+c. Both these velocities are measured relative to the same inertial reference frame —namely,

For that of the spacecraft. Therefore, the renegades aboard the spacecraft see the laser beam move

de- away from the cruiser at a velocity that is the difference between these two velocities, or

er- +c¢ — (+0.7¢) = +0.3c. The velocity-addition formula, Equation 28.8, is not applicable here

am- because both velocities are measured relative to the same inertial reference frame (the space-
craft’s reference frame). The velocity-addition formula can be used only when the velocities

the are measured relative to different inertial reference frames.

2cts

Related Homework: Conceptual Question 12, Problem 34

Laser beam
B e : BB  Figure 28.12 An intergalactic
G : cruiser, closing in on a hostile
R spacecraft, fires a beam of laser light.

" Hostile spacécraft ;
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Figure 28.13 The speed of the light
emitted by the flashlight is ¢ relative to
both the truck and the observer on the
ground.

Ground-based
observer

It is a straightforward matter to show that the velocity-addition formula is consistent
with the speed of light postulate. Consider Figure 28.13, which shows a person riding on
a truck and holding a flashlight. The velocity of the light, relative to the person on the
truck, is vr = +c. The velocity vy of the light relative to the observer standing on the
ground is given by the velocity-addition formula as

_— Ur + Urg _ ¢ -+ Urg _ (c + UTG)C
o = - = =
1 + PuYre 1 + s (¢ + vrg)

c? c?

Thus, the velocity-addition formula indicates that the observer on the ground and the per-
son on the truck both measure the speed of light to be ¢, independent of the relative veloc-
ity vy between them. This is exactly what the speed of light postulate states.




