Introduction Sheet 9

Calculus 1: Differentiation

Rules to Remember:

For a function y of the variable x, dy/dx denotes the **derivative** of y with respect to x; its value is the rate of change of y with respect to x or the gradient of the graph of y versus x. The process of finding dy/dx is **differentiation**.

Some simple special cases for differentiation:

- If $y = ax^n$, then $dy/dx = nax^{n-1}$
- If $y = \sin x$, then $dy/dx = \cos x$
- If $y = \cos x$, then $dy/dx = -\sin x$
- If $y = e^x$, then $dy/dx = e^x$
- If $y = \ln x$, then dy/dx = 1/x

The above cases together with the following rules enable differentiation of more complicated functions:

- If y = af(x) + bg(x), with a, b constant (independent of x), then dy/dx = a df/dx + b dg/dx (linearity).
- If y = f(x)g(x) then dy/dx = f(x)dg/dx + g(x)df/dx (product rule).
- If y = f(z) and z = g(x) then $dy/dx = df/dz \times dg/dx$ (chain rule).
- dx/dy = 1/(dy/dx) (reciprocity).

Since dy/dx is itself a function of x, it may also be differentiated using the above rules. This gives the 2nd derivative, d^2y/dx^2 , whose value is the rate of change of the rate of change of y with respect to x or the curvature of the graph of y versus x.

If dy/dx = 0 for a particular value of x, the graph of y is flat there. It means the function is at a maximum, a minimum, or an inflection point. Which of these it is can be decided either by sketching the graph (preferable), or finding the curvature d^2y/dx^2 at that value of x (if < 0 then max, if > 0 then min).

Practice Questions:

P1 Differentiate the following functions x(t) with respect to the variable t:

a)
$$x(t) = 3t$$
 b) $x(t) = 4t^4$ c) $x(t) = \frac{\pi}{t^2}$ d) $x(t) = t^3(1+t)$ e) $x(t) = \frac{1}{At^3+B}$ f) $x(t) = (A\sqrt{t}+B)^4$

P2 Find the rate of change of the functions y(z) with respect to z

a)
$$y(z) = 2\sin z$$
 b) $y(z) = \cos^2 z$ c) $y(z) = e^{az}$
d) $y(z) = A\sin(e^{Bz})$ e) $y(z) = \tan z^3$ f) $y(z) = z\ln z^2$

P3 Using differentiation, find the maximum value of the following functions f(x).

a)
$$f(x) = -x^2 + x$$
 b) $f(x) = \ln x - x$ c) $f(x) = -x^4 + 2x^2$
d) $f(x) = \frac{x^2}{4} + \frac{4}{x}$ e) $f(x) = xe^{-2x^2}$ f) $f(x) = \frac{\sqrt{x-n}}{x}$; $n > 0$

[For e), leave your answer in terms of 'e']

P4 A car's motion in the x-direction at time t is described by $x(t) = At^2 + Bt$ where $A = 5 \text{ms}^{-2}$ and $B = 10 \text{ms}^{-1}$.

- a) Give the expression at time t for
- i) the velocity
- ii) the acceleration
- b) Give the car's position, velocity and acceleration after
- i) 3 s
- ii) 25 s

P5 The Nebraska Board of Grain are designing new portable grain silos. They have enough sheet material to make 2000 cylindrical containers, each of fixed surface area $54m^2$ (this includes the cylinder ends). Calculate in terms of π the maximum volume of grain that could be stored in total.

P6 The height h(x) in metres above the ground of a parachutist varies with her horizontal displacement x in meters from a landing target on the ground as $h(x) = 50 \sin^{-1}(0.1x)$. What is the rate of change of h with respect to x at x = 6m?

[Hint: Differentiate sin(h/50) to get an equation involving dh/dx]