PHYS 1307 - 001 SYLLABUS General Physics I

S. Dalley

Spring 2018

Text: Fundamentals Of Physics 10th edition

Halliday, Resnick, Walker,

Quiz every Tuesday in class, on topics covered in prior week unless otherwise stated. **Survey** due 10 am every class day

Date	Class Topic	Pre-class	Suggested Quiz	Objectives			
		Reading	Practice Problems				
Tue 1/23	Measurement	1.1-2	1.3, 1.12,	Understand and use dimensions, units, and significant figures			
Thu 1/ 25	Straight Line Motion I	2.1-2	2.2, 2.15	Understand and use distance, displacement, velocity, speed in one dimension			
Tue 1/30	Straight Line Motion II	2.3-4	2.18, 2.19, 2.25,	Understand acceleration in one dimension and apply to constant acceleration			
Thu 2/1	Straight Line Motion III	2.5-6	2.37, 2.44, 2.53	Interpret kinematics graphically and apply to free fall			
Tue 2/6	Vectors	3.1-2	4.9, 4.11,	Understand vectors conceptually, scalar components, apply vector addition			
Thu 2/8	Motion in 2D & 3D	4.1-4	4.15, 4.22, 4.32	Understand and use vector kinematics in two and three dimensions			
Tue 2/13	Force and Motion I	5.1-2	(5.1), (5.6), 5.7, 5.16,	Understand Newton's 3 laws, apply to gravity, tension & normal forces in 1D			
Thu 2/15	Force and Motion II	5.3	(5.17), (5.20), 5.38, 5.57	Apply Newton's laws with more than one dimension and/or body			
Tue 2/20	Force and Motion III	6.1-2	6.13, (6.15), (6.36), 6.40,	Apply Newton's laws to examples with resistive force			
Thu 2/22	Force and Motion IV	[4.5] 6.3	6.43,6.49, (6.52), (6.57)	Apply Newton's laws to examples with circular motion			
Tue 2/27	Kinetic Energy & Work I	7.1-3 [3.3]	(7.8), 7.11, (7.17), 7.20,	Apply kinetic energy and work to constant forces			
Thu 3/1	Kinetic Energy & Work II	7.4-6	(7.30),7.39, (7.44), 7.46,	Apply kinetic energy and work to non-constant forces, and power			
Tue 3/6	Potential and Conserved Energy I	8.1-3	(8.01), 8.03, (8.24),8.27,	Understand potential energy and apply conservation of mechanical energy			
Thu 3/8	Potential and Conserved Energy II	8.4-5	8.42, 8.49, (8.122)	Analyze systems subject to external and non-conservative forces			
SPRING BREAK							
Tue 3/20	MID-TERM EXAM - all prior topics						
Thu 3/22	Linear Momentum I	9.1-3	9.2,9.6,9.9,9.17	Understand CoM, Newton's 2nd law, linear momentum for motion of systems			
Tue 3/27	Linear Momentum II – no quiz	9.4-8	9.34, 9.43,9.60,,9.74	Apply impulse and conservation of linear momentum to collisions			
Thu 3/29	Oscillations I	15.1-2	15.9, 15.11,15.30,15.33,	Apply mechanics to Simple Harmonic Motion			
Tue 4/3	Oscillations II – momentum quiz	15.4-6	15.58, 15.61	Understand concepts of damped and forced oscillations			
Thu 4/5	Transverse Waves	16.1-3	16.2, 16.23	Understand concepts of transverse wave displacement, speed, and energy			
Tue 4/10*	Sound Waves I – oscillations quiz	17.1-3	17.7, 17.9, 17.11, 17.16	Understand concepts of sound wave displacement, speed, and interference			
Thu 4/12	Sound Waves II	17.4,7	17.29,17.36, 17.55,17.61	Apply sound waves concepts to intensity and to frequency			

Tue 4/17	Fluids I	14.1-[3]-5	14.3, 14.8, 14.28, 14.40	Understand pressure effects of ideal fluids at rest	
Thu 4/19	Fluids II	14.6-7	14.52, 14.59, 14.76	Understand and apply equations of Bernoulli and Continuity to moving ideal fluids	
Tue 4/24	Rotational Motion I	10.1-3 [3.3]	10.13, 10.22,	Understand angular displacement, velocity, acceleration about a fixed axis	
Thu 4/26	Rotational Motion II	10.4-(5)-7	10.48,10.53,	Extend and apply laws of mechanics to rotation (rotational inertia, torque)	
Tue 5/1	Rotational Motion III	11.4-8	11.29,11.43	Understand and apply angular momentum	
Thu 5/3	Equilibrium	12.1-2	12.9,12.13	Apply mechanics to systems in equilibrium (balance)	
Fr 5/11	FINAL EXAM (1/26 - 5/4 material) 11:30 am - 2:30 pm				

*Drop date is Wed 4/11

Answers to odd-numbered problems in the textbook. Answers to even-numbered suggested problems (SI units unless stated otherwise): 1.12 3.1, 2.2 (a) 1.74 (b) 2.14, 2.18 (a) 54 (b) 18 (c) -12 (d) 64 (e) 4 (f) 24 (g) 2 (h) -24 (i) 18, 2.44 (a) 3.70 (b) 1.74 (c) 0.154, 4.22 (a) 0.495 (b) 3.07, 4.40 (a) 24.95 (b) 25.02, 5.16 (a) 0.260, 5.38 (a) 68N (b) 28N (c) - 12N, 6.40 (a) 66.0 (b) -2.20 x 10² dC, 7.20 45, 7.46 2.7 x 10⁵, 8.42 (a) 5.6 x 10² (b) 5.6 x 10², 9.2 (a) 1.1 (b) 1.3, 9.6 (a) 0.20 (c) 0.16, 9.34 (a) 4.50 x 10⁻³ (b) 0.529, 9.60 (a) 1.9 (b) right (c) elastic, 9.74 -500J, 10.22 (a) 3.0 (b) 30 (c) 6.0 (d) 90, 10.48 (a) 8.4 (b) 17 (c) 0, 11.56 6.46, 14.8 1.4 x 10⁵, 14.28 (b) 103, 14.40 6.5 mm, 14.52 4, 14.76 (a) 5% (b) 41%, 15.30 (a) 200 (b) 1.39 (c) 1.91, 15.58 0.39, 17.16 4.12, 17.36 0.67

Disability Accommodations: Students needing academic accommodations for a disability must first register with Disability Accommodations & Success Strategies (DASS). Students can call 214-768-1470 or visit http://www.smu.edu/Provost/ALEC/DASS to begin the process. Once registered, students should then schedule an appointment with the professor as early in the semester as possible, present a DASS Accommodation Letter, and make appropriate arrangements. Please note that accommodations are not retroactive and require advance notice to implement.

Religious Observance: Religiously observant students wishing to be absent on holidays that require missing class should notify their professors in writing at the beginning of the semester, and should discuss with them, in advance, acceptable ways of making up any work missed because of the absence. (See University Policy No. 1.9.)

Excused Absences for University Extracurricular Activities: Students participating in an officially sanctioned, scheduled University extracurricular activity should be given the opportunity to make up class assignments or other graded assignments missed as a result of their participation. It is the responsibility of the student to make arrangements with the instructor prior to any missed scheduled examination or other missed assignment for making up the work. (University Undergraduate Catalogue)