Introduction Sheet 1

Manipulating Powers, Fractions, Symbols and Units

Rules to Remember:

Fractions

Example
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \text{ (not } \frac{a+c}{b+d} \text{)} \qquad \frac{2}{3} + \frac{4}{5} = \frac{22}{15}$$

$$\frac{a}{b\left(\frac{c}{d}\right)} = \frac{ad}{bc} \qquad \frac{2}{3\left(\frac{4}{5}\right)} = \frac{10}{12} = \frac{5}{6} \text{ in simplest form}$$

Powers

Example
$$a^{n} = a \times a \times a \times \cdots \times a \quad (n \text{ lots of } a) \qquad 2^{3} = 2 \times 2 \times 2 = 8$$

$$a^{-n} = \frac{1}{a^{n}} \qquad \qquad 2^{-3} = \frac{1}{8}$$

$$a^{1} = a \quad , \quad a^{0} = 1$$

$$a^{\frac{1}{n}} = {}^{n}\sqrt{a} \quad (n^{\text{th}} \text{ root of } a) \qquad \qquad 8^{\frac{1}{3}} = 2$$

$$a^{\frac{m}{n}} = {}^{n}\sqrt{a^{m}} = ({}^{n}\sqrt{a})^{m} \qquad \qquad 27^{\frac{2}{3}} = (27^{\frac{1}{3}})^{2} = (3)^{2} = 9$$

$$a^{m} \times a^{n} = a^{n+m} \qquad \qquad 2^{3} \times 2^{2} = 32 = 2^{5}$$

$$a^{m} = a^{m-n} \qquad \qquad 2^{3} = 2 = 2^{1}$$

$$(a^{m})^{n} = a^{mn} \qquad \qquad (2^{3})^{2} = 8^{2} = 64 = 2^{6}$$

Units

The units of physical quantities can be treated by the same rules of algebra, e.g. if M is a mass in kilogrammes (kg), l a length in metres (m), t a time in seconds (s), the physical units of the quantity

 $\frac{\sqrt{M^2l^3}}{t^2}$

are $kgm^{3/2}s^{-2}$. When giving a numerical value for a physical quantity, units must always be specified. Answers with no or incorrect units will be marked wrong!

Practice Questions:

P1 Express as a single fraction in its simplest form:

a)
$$\frac{5}{8} + \frac{2}{3}$$
 b) $\frac{1}{2} - \frac{7}{6}$ c) $\frac{3}{4} + \frac{1}{5} + \frac{2}{7}$ d) $\frac{2}{3} - \frac{-5}{6}$ e) $\frac{2}{3} \times \frac{5}{4}$ f) $\frac{-6}{7} \times \frac{3}{2}$ g) $\frac{7}{3(\frac{3}{7})}$ h) $\frac{\frac{9}{4}}{\frac{3}{2}}$

P2 Evaluate:

a)
$$16^{\frac{1}{2}}$$
 b) $27^{\frac{2}{3}}$ c) $32^{\frac{1}{5}}$ d) $27^{-\frac{1}{3}}$ e) $(\frac{1}{4})^{-2}$ f) $\frac{3^3}{2^{-2}}$ g) $(2^2)^4$

P3 Simplify:

a)
$$10^{1} \times 10^{2}$$
 b) $10^{14} \times 10^{6}$ c) $x^{2}x^{9}$ d) $C^{3}D^{2}C^{7}D^{8}$ e) $\frac{a^{5}}{a^{2}}$ f) $\frac{\sqrt{a^{24}}}{a^{16}}$ g) $5x^{7}y^{3} \times 2y^{5}x^{10}$ h) $\frac{4x^{3}y^{\frac{1}{3}}}{2x^{3}y^{-3}}$ i) $(y^{2})^{3}$ j) $(z^{4})^{a}$ k) $(x^{3})^{-2}$ l) $(10^{4})^{-2}$ m) $(y^{4})^{\frac{1}{2}}$ n) $\sqrt{B^{4}}$ o) $\sqrt{\sqrt{C^{4}}}$ p) $\left(\frac{4y^{\frac{1}{3}}}{x^{3}}\sqrt{\frac{32x^{2}}{2\sqrt{y}}}\right)^{\frac{1}{2}}$

P4 A circuit contains two resistors, $R_1 = 6\Omega$, $R_2 = 4\Omega$. What is the total resistance if they are connected (a) in series (b) in parallel?

P5 For what range of positive values of x is

(a)
$$x^3 < x^{1/3}$$
?

(b)
$$x^2 > x^{-2}$$
?

P6 The time t it takes a ball, dropped from rest and falling under gravity, to travel distance s, is given by the formula

$$t = \sqrt{\frac{2s}{b}} .$$

Given that the units must be the same on both sides of the equation, what are the units of the constant b in terms of metres (m) and seconds (s)?