6.8 A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. We know B will be CCW as viewed from above. (Right?) What about H and M inside the cylinder?

A) Both are CCW
B) Both are CW
C) H is CCW, but M is CW
D) H is CW, M is CCW
E) ???

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound volume current?

A) J_B points parallel to I
B) J_B points anti-parallel to I
C) It's zero!
D)Other/not sure

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction. What is the direction of the bound **surface** current?

A) K_B points parallel to I
B) K_B points anti-parallel to I
C) Other/not sure

Summary:

A very long aluminum (paramagnetic!) rod carries a uniformly distributed current I along the +z direction.

J_B points parallel to I K_B points anti-parallel to I

Total bound current vanishes, conservation of charge!

What if that long rod (the wire) was made of copper (diamagnetic!) instead. Of B, M, H, and J_bound, which ones "flip sign"?

The "para" case

The "dia" case

What if that long rod (the wire) was made of copper (diamagnetic!) instead. Of B, M, H, and J_bound, which ones "flip sign"?

The "para" case

The "dia" case

Inside a hollow solenoid, B=B₀= μ_0 nI. What is the formula for H inside?

Inside a nonow sciencid, $B=B_0=\mu_0 nI$, (so $H=H_0=nI$) If the sciencid is filled with a normal paramagnetic material, like aluminum, what is B inside?...

A) Still exactly B_0 B) a little more than B_0 C) a lot more D) a little less than B_0 E) a lot less than B_0

Inside a hollow solenoid, $B=B_0=\mu_0 nI$, (so $H=H_0=nI$) If the solenoid is filled with iron, what is H inside?...

- A) H_0 B) a little more than H_0
- C) a lot more
- D) a little less than H₀
- E) a lot less than H_0

BOUNDARY VALUE PROBLEMS

I have a boundary sheet, and would like to learn about the change (or continuity!) of H(parallel) across the boundary.

Am I going to need to know about A) $\nabla \times \mathbf{H}$ B) $\nabla \cdot \mathbf{H}$ C) $\nabla \mathbf{H}$ 272 I have a boundary sheet, and would like to learn about the change (or continuity!) of H(perp) across the boundary.

Am I going to need to know about A) $\nabla \times \mathbf{H}$ B) $\nabla \cdot \mathbf{H}$ C) $\nabla \mathbf{H}$??? A very long rod carries a uniformly distributed current I along the +z direction. Compare the B-field OUTSIDE when the rod is a paramagnet (e.g. Al) to the B-field outside when the rod is a diamagnet (e.g. Cu)

B outside the paramagnetic rod is ..

- A) Slightly smaller than...
- B) The same as...
- C) Slightly larger than...

B outside the diamagnetic rod

A large chunk of paramagnetic material ($\chi_m > 0$) has a uniform field B₀ throughout its bulk, and thus a uniform H₀=??

A large chunk of paramagnetic material (χ_m >0) has a uniform field B₀ throughout its bulk, and thus a uniform H₀ = B₀/µ = B₀/ µ₀(1+ χ_M) We then cut out a cylindrical hole (very skinny,

very tall!)

What is M at the center of that hole?A) $\chi_M H_0$ B) little more than $\chi_M H_0$ C) Little less than $\chi_M H_0$ D) ZeroE) ??? (it depends/not sure)

^{6.10} A large chunk of paramagnetic material (χ_m >0) has a uniform field B0 throughout its interior. We cut out a cylindrical hole (very skinny, very tall!)

What is B at the center of that hole? A) B_0 B) more than B_0 C) less than B_0 D) ?? A sphere (with a spherical cavity inside it) is made of a material with *very* large positive $\chi_{m.}$ It is placed in a region of uniform B field. Which figure best shows the resulting B field lines?

E) None of these can be even remotely correct

Mu-metal (75% nickel, 15% iron, plus copper and molybdenum) acts as a *sort* of "magnetic shield"... (there is no perfect "Faraday cage" effect for magnetism - why not)

