CURRENTS, OHM'S LAW

An electric current *I* flows along a copper wire (low resistivity) into a resistor made of carbon (high resistivity) then back into another copper wire. *In which material is the electric field largest?*

- A. In the copper wire
- B. In the carbon resistor
- C. It's the same in both copper and carbon
- D. It depends on the sizes of the copper and carbon

Which of the following is a statement of charge conservation?

A)
$$\frac{\partial \rho}{\partial t} = -\int \mathbf{J} \cdot d\mathbf{I}$$

B) $\frac{\partial \rho}{\partial t} = -\int \mathbf{J} \cdot d\mathbf{I}$
C) $\frac{\partial \rho}{\partial t} = -\int \int \int (\nabla \cdot \mathbf{J}) d\tau$
D) $\frac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{J}$

E) Not sure/can't remember

Georg Simon Ohm

1789 – 1854. German physics and math teacher.

V = IR

Empirical relation (not a law).

In 1781 Cavendish experimented with Leyden jars and glass tubes of varying diameter and length filled with salt solution. He measured the current by noting how strong a shock he felt as he completed the circuit with his body! He found the "velocity" (current) varied directly as the "degree of electrification" (voltage).

MOTIONAL EMF

One end of rectangular metal loop enters a region of constant uniform magnetic field **B** with speed v, as shown. In which direction does the current flow?

- B. CCW
- C. Depends on the length of the sides
- D. Depends on the resistivity of the metal

One end of rectangular metal loop enters a region of constant uniform magnetic field **B**, with constant speed *v*, as shown. What direction is the net force on the loop?

E. The net force is zero

One end of rectangular metal loop enters a region of constant uniform magnetic field **B**, with constant speed *v*, as shown. What is the flux through the loop at the instant shown?

Consider two situations:

loop moves right at velocity V(loop), and
 magnet moves left, V(mag).
 Assuming |V(loop)| = |V(mag)|, what will
 the ammeter read in each case?
 (Call CW current positive)

