Resources allowed:
Griffiths textbook, calculator, formulas from the covers of Griffiths hardback

Part I. Short Conceptual Questions. Time allowed 1 hour. 10% of course grade

1. A particle is described by a normalized wavefunction at time $t=0$ on the x-axis
$\Psi(x, 0)=\mathrm{A} \exp \left[-x^{2}+(2 \pi \mathrm{i} x / \lambda)\right] \quad$ where λ is a real parameter.
Write down explicitly the x integral you would need to evaluate in order to calculate the following (you DO NOT need to evaluate any of the integrals):
(a) The constant A
(b) The probability of observing the particle in the interval (a, b) of the x axis.
(c) $\left\langle x^{2}\right\rangle$
(d) $\langle p\rangle$
(e) The momentum space wavefunction $\Phi(p, 0)$ at time zero. [1⁄2\% each part]
2. Consider a particle of mass m moving subject to the force of gravity (assumed constant) above the ground. With a clearly defined co-ordinate system, write down Schrodinger's equation for this problem and state the boundary conditions you would apply to its solutions.
[1\%]
3. Let $\psi_{\mathrm{n}}(x)\{\mathrm{n}=0,1,2,3, \ldots\}$ be a complete orthonormal set of eigenfunctions of the Hermitian operator Q with discrete eigenvalues $q_{\mathrm{n}}: Q \psi_{\mathrm{n}}=q_{\mathrm{n}} \psi_{\mathrm{n}}$. Consider the wavefunction defined at time zero as

$$
\Psi(x, 0)=\sum_{\mathrm{n}=1}^{\infty} a_{\mathrm{n}} \psi_{\mathrm{n}}
$$

for some constant coefficients a_{n}. In terms of these coefficients, write down expressions for the following
(a) The probability of measuring Q and getting the value q_{3}.
(b) After having measured Q and getting the value q_{3}, the probability of measuring Q immediately again and getting the value q_{2}.
(c) The probability of measuring Q and getting a value that is not one of the eigenvalues q_{n}.
(d) The normalization condition for Ψ
(e) $\langle Q\rangle$
4. Write down the Hermitian conjugate of the following operators
(a) id $\mathrm{d} / \mathrm{d} x$
(b) $[x, p]$
5. A particle has an equal probability of being found anywhere on the interval (a, b) of the x axis, and probability $1 / 2$ of being found outside this interval. What is the probability density in the interval (a, b)?
6. Write down all the boundary conditions you would apply at positions (a), (b), and (c) to a solution $\Psi(x)$ of Schrodinger's equation of total energy $\mathrm{E}<$ Vo for the following potential $\mathrm{V}(\mathrm{x})$. (you DO NOT need to solve the Schrodinger equation for $\Psi(x)$).

(a)
(b)
(c)
[2\%]

Part II. Extended Problems. Time allowed 2 hours. 14% of course grade

1) A hydrogen atom is in the stationary state $\Psi_{n l m}=\Psi_{210}$. Write out this normalized wavefunction explicitly in spherical polar coordinates and calculate the expectation value of the potential energy $\langle\mathrm{V}\rangle$, comparing it to the known total energy eigenvalue.
2) An electron under the influence of a uniform magnetic field B_{y} in the y-direction has its spin initially (at $t=0$) pointing in the positive x-direction. That is, it is in an eigenstate of S_{x} with eigenvalue $+1 / 2 \hbar$. The Hamiltonian $H=-\boldsymbol{\mu} \cdot \mathbf{B}=-\gamma B_{y} S_{y}$ consists of the interaction of the magnetic dipole moment $\boldsymbol{\mu}$ due to spin and the magnetic field \mathbf{B}.

Show that the probability of finding the electron with its spin pointing in the positive z-direction at a later time t is $\mathrm{P}\left(S_{z}=+1 / 2 \hbar\right)=1 / 2\left[1+\sin \left(\gamma B_{\mathrm{y}} t\right)\right]$.

Hint: The eigenvectors of S_{x} are given in Griffiths [eq $4.1512^{\text {nd }}$ edition]; if you choose a method that uses the eigenvectors of S_{y} you will need to work those out yourself.
3) ???

