Time allowed 1 hour 15 min .
Resources allowed:
Griffiths textbook, calculator, formulas from the covers of Griffiths hardback

1. Given the spatial wavefunction $\psi(\mathrm{x})=\mathrm{Ax} \exp (-\mathrm{kx})(0<\mathrm{x}<\infty, \mathrm{k}>0), \psi(\mathrm{x})=0(0>\mathrm{x})$,
(a) what value must the constant A take in terms of k in order that $\psi$ is normalized?
[5 points]
(b) If $\mathrm{k}=0.5 \times 10^{10} \mathrm{~m}^{-1}$, what is the probability of finding the particle described by $\psi$ between $\mathrm{x}=0 \mathrm{~m}$ and $\mathrm{x}=2.0 \times 10^{-10} \mathrm{~m}$ ?
[5 points]
2. Consider a stationary state having a wave function periodic in time, namely, that there exists a time T for which $\psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}, \mathrm{t}+\mathrm{T})$. Find the allowed values of the energy in terms of T.
[5 points]
3. Consider a particle of mass $m$ in the one-dimensional infinite square well potential

$$
\begin{gathered}
V(x)=+\infty\{x<-L \text { and } x>L\} \\
V(x)=0 \quad\{-L<x<L\}
\end{gathered}
$$

(a) Write down all the normalized stationary state wavefunctions $\psi(\mathrm{x})$ in terms of L and also the corresponding energies (you may either rewrite those already shown in Griffiths, or derive them directly by solving the Schrodinger equation).
(b) For the odd wavefunctions, $\psi(x)=-\psi(-x)$, calculate the spatial uncertainty $\Delta x=\sigma_{x}$ and the momentum uncertainty $\Delta \mathrm{p}=\sigma_{\mathrm{p}}$ and then verify that the uncertainty principle is satisfied.
[10 points]

