Time allowed 1 hour 15 min .
Resources: Griffiths textbook, calculator, formulas from the covers of Griffiths hardback

1. Consider a one-dimensional step-function potential with an attractive δ-function potential at its edge

$$
V(x)=V_{0} \Theta(x)-\left(\hbar^{2} g / 2 m\right) \delta(x)
$$

(a) A wavefunction $A \exp$ (i $k x$) with $A=1$ represents particles of energy $E>V_{0}$ incident from the left. Find the complete wavefunction (including transmitted and reflected parts) in each region in terms of k and q, where

$$
k=\frac{\sqrt{2 m E}}{\hbar}
$$

$$
q=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
$$

[10 points]
(b) Now consider energies $E<0$. Find an implicit equation for allowed bound state energies E (you do not have to solve it) in terms of s and t, where

$$
s=\frac{\sqrt{-2 m E}}{\hbar} \quad t=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}
$$

[7 points]
2. A simple harmonic oscillator is in the state

$$
\psi=\mathrm{N}\left(\psi_{0}+\lambda \psi_{1}\right)
$$

where λ is a real parameter, and ψ_{0} and ψ_{1} are the first two orthonormal stationary states.
(a) Determine the normalization constant N in terms of λ.
(b) Using raising and lowering operators (see Griffiths 2.69), calculate the uncertainty Δx in terms of λ.

