Introduction Sheet 2 Manipulating Scientific Forms

Rules to Remember:

Scientific Form

In order to write and manipulate very large and very small numbers in physics, it is standard practice to write them in **Scientific Form** $a \times 10^p$ where 1 < a < 10 and p is a non-zero integer. When actually doing a calculation, it is advisable to always use scientific form for each quantity appearing in the formulae. However, you should be aware that often the input to or result of a calculation isn't put in scientific form for numbers up to about 1000 and as small as about 0.001; for example, it is easier to quickly appreciate the quantity 0.78 rather than 7.8×10^{-1} . Therefore, as a rule of thumb, you need not write your answers in scientific form if p is 1, 2, -1, or -2, though it's OK if you do.

Examples

$$67800 = 6.78 \times 10^{4} \qquad 0.000054 = 5.4 \times 10^{-5}$$

$$(4 \times 10^{4}) \times (3 \times 10^{7}) = 12 \times 10^{11} = 1.2 \times 10^{12} \quad \frac{3 \times 10^{6}}{4 \times 10^{9}} = 0.75 \times 10^{-3} = 7.5 \times 10^{-4}$$

$$2.2 \times 10^{2} + 3.4 \times 10^{3} = 3.62 \times 10^{3} \qquad (8 \times 10^{6})^{\frac{1}{3}} = 2 \times 10^{2}$$

Prefixes

Another way to make large or small numbers manageable is to use **prefixes** on the unit symbols that alter the physical units by a mutiple. Typically the multiples are 1000's, with the most commonly used being

$$10^{-15}$$
 femto (f) 10^{-12} pico (p) 10^{-9} nano (n) 10^{-6} micro (μ) 10^{-3} milli (m) 10^{3} kilo (k) 10^{6} mega (M) 10^{9} giga (G) 10^{12} tera (T) 10^{15} peta (P)

e.g.
$$5 \times 10^{-5} \text{J} = 5 \times 10^{1} \times 10^{-6} \text{J} = 50 \mu\text{J}, 2 \times 10^{7} \text{m}^{2} = 2 \times 10^{1} \times 10^{6} \text{m}^{2} = 20 \text{km}^{2}.$$

It is a matter of popularity whether one uses scientific notation or prefixes, e.g. one commonly uses km (10^3 metres) but not Mm (10^6 metres). It is advisable to remove prefixes on quantities input to a calculation by rewriting them in scientific form first. For the test sheet, you should also give your answers in scientific notation without prefixes on the unit symbols.

Practice Questions:

P1 Evaluate in scientific form:

$$\begin{array}{lll} \text{a) } 0.00125 & \text{b) } 20700 & \text{c) } (2.5\times 10^6)\times (2\times 10^{-12}) \\ \text{d) } \frac{1.25\times 10^4}{5\times 10^7} & \text{e) } \frac{3.6\times 10^{-8}}{6\times 10^{-4}} & \text{f) } \sqrt{6.4\times 10^5} \\ \text{g) } (4\times 10^4)^{-\frac{1}{2}} & \text{h) } 3\times 10^{10} + 3.07\times 10^{12} & \text{i) } 7\times 10^{-4} - 6.13\times 10^{-2} \end{array}$$

d)
$$\frac{1.25 \times 10^4}{5 \times 10^7}$$

e)
$$\frac{3.6 \times 10^{-6}}{6 \times 10^{-4}}$$

f)
$$\sqrt{6.4 \times 10^{5}}$$

g)
$$(4 \times 10^4)^{-1}$$

h)
$$3 \times 10^{10} + 3.07 \times 10^{12}$$

i)
$$7 \times 10^{-4} - 6.13 \times 10^{-2}$$

P2 Rewrite the following quantities in scientific form without prefixes on the unit symbols

a)
$$0.01$$
mm b) 3.3μ A c) 22 kms⁻¹ d) 144 nm² e) 0.7 PWmm⁻²

Two semiconducting layers of material, of thicknesses $4.5 \times 10^{-6} \text{m}$ and $2 \times 10^{-5} \text{m}$, are bonded one on top of the other. What is the total thickness?

P4 The power dissipated by a resistance R when current I flows is given by $P = I^2R$. Calculate P when $R = 4 \times 10^4 \Omega$ and $I = 3 \times 10^{-3} A$.

P5 The acceleration a (in units of ms⁻²) produced by the application of a force F (in units of N) to a mass m (in units of kg), is given by Newtons 2nd law

$$F = ma$$
.

(i) If
$$m = 3 \times 10^5 \text{kg}$$
 and $a = 4 \times 10^{-2} \text{ms}^{-2}$, find F .

(ii) If
$$m = 2 \times 10^{-4} \text{kg}$$
 and $a = 6 \times 10^{5} \text{kms}^{-2}$, find F

(ii) If
$$m = 2 \times 10^{-4}$$
kg and $a = 6 \times 10^{5}$ kms⁻², find F .
(iii) If $m = 1.3 \times 10^{19}$ kg and $F = 2.6 \times 10^{5}$ N, find a

P6 A spring of spring constant k has a strain energy W when extended by an amount x, where

$$W = \frac{1}{2}kx^2 \ .$$

Find W when

(i)
$$k = 1.2 \text{Jm}^{-2}$$
, $x = 2 \times 10^{-3} \text{m}$

(i)
$$k = 1.2 \text{Jm}^{-2}$$
, $x = 2 \times 10^{-3} \text{m}$.
(ii) $k = 1.2 \times 10^4 \text{Jm}^{-2}$, $x = 5 \times 10^{-3} \text{mm}$.