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Abstract

We describe an adjustable parallel plate capacitor apparatus designed for use in an undergraduate

laboratory which permits precise variation of plate separation distances (10 µm increments) and

overlap area. Two experiments are performed with the device to test the ideal capacitor formula

derived from Gauss’s Law. After correcting for edge effects and minor plate tilt, the device yielded

capacitance values within 3% of theoretical values.
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I. INTRODUCTION

There is a dearth of quality experiments that can be performed in an undergraduate lab-

oratory to test classical electrostatics. Computer simulations help to fill this void, but there

are few opportunities for students to conduct hands-on investigations to test fundamental

principles like Gauss’s Law. Parallel plate capacitors are routinely studied in introductory

courses and would seem a simple lab tool, but they present problems because their capaci-

tances are sensitive and can deviate substantially from theoretical values.

An idealized parallel plate capacitor, like those modeled in most textbooks, consists of

two isolated conducting plates of zero thickness and very large (approximately infinite)

surface area (A). When charged, the plates have perfectly uniform charge densities of

equal magnitude (σ) and opposite sign, which create a uniform electric field between, and

orthogonal to, the plates. From Gauss’s Law, it can be shown that when the space between

the plates is unfilled (or filled with air, since εr ≈ 1), this electric field has a magnitude

of σ/ε0, corresponding to a voltage between the plates of σd/ε0, where d is the separation

distance between the plates. Accordingly, the capacitance of the idealized capacitor is,

C0 = ε0
A

d
. (1)

In practice, an ideal capacitor can only be approximated since, e.g., plate areas cannot

be infinite (causing “edge effects”), plates cannot be made perfectly parallel (causing “tilt

effects”), and plates cannot have zero thickness or otherwise have zero charge outside the

inner face (resulting in additional “body capacitance”). Each limitation results in a variance

between actual and idealized capacitance that can be quite large. These effects can be

adequately controlled and estimated if a high precision capacitor is utilized, but such devices

are not readily available in most laboratories. We describe such an apparatus, which is small,

inexpensive, and easy to operate, and use it to conduct tests of the ideal capacitance formula.

II. DESCRIPTION OF OUR PARALLEL PLATE CAPACITOR APPARATUS

Our apparatus consists of two thin, square, parallel metal plates attached to blocks of

insulating material. The plates have faces that are 10 cm × 10 cm and a thickness of roughly

1.5 mm. The top plate is firmly affixed to an insulating frame, while the bottom plate is

attached to a smaller block of insulating material that is free to slide horizontally, allowing
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FIG. 1. The instrument.

the overlapping area of the plates to be adjusted by increments of 0.5 mm measured by a

ruler along the bottom of the instrument. The plate overlap area can be adjusted from 0 cm2

to 100 cm2. The distance between the plates is changed using an adjustable micrometer head

whose smallest unit of measurable change is 10 µm and which can be adjusted from 0 mm to

10 mm. While the plates should be perfectly parallel in theory, in reality the plates have a

slight tilt that is too small to be visible. (As detailed below, our analysis provides a value for

the average deviation in plate separation of roughly 30 µm.) The device permits insertion of

a dielectric between the plates so that the property of such material can be studied.

III. ADJUSTING THE IDEAL CAPACITANCE FORMULA TO ACCOUNT FOR

EDGE AND TILT EFFECTS AND BODY CAPACITANCE

A. Edge Effects

Edge effects result because the charge distribution and electric field of finite plates do not

match those of infinite sheets of charge. Actual capacitor plates have non-uniform charge

densities with charge more concentrated near edges and corners. Further, the electric field

fringes near the edges of the plates and is lesser between the plates than for a corresponding

ideal capacitor.1,2 As a consequence, actual capacitance is larger than idealized. This effect

is usually represented as a multiplier or ratio of actual to ideal capacitance, α = C/C0. This

ratio depends on the dimensionless “aspect ratio”, which for a square capacitor is defined

as the ratio of the plate separation distance to the length of the side of a square plate

(b = d/L).3
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Several studies have investigated edge effects theoretically and empirically.3–8 Nishiyama

and Nakamura provide simple theoretical formulas for calculating edge effects for capacitors

of various shape over stated ranges of aspect ratios.3 Their work reveals that edge effects for

square and disk capacitors tend to be similar and converge as aspect ratios become small

(e.g., at an aspect ratio of b = .1, αdisk = 1.31809 while αsquare = 1.29980). The aspect

ratios in our study are very small (.002 ≤ b ≤ .016) and most closely overlap with the range

(.005 ≤ b ≤ .1) applicable to the following disk capacitor edge effects formula:

α = 1 + 2.367b0.867 (2)

Given the substantial agreement between α values for disk and square capacitors, and con-

sidering that edge effects are quite small for the aspect ratios here (e.g., for b = .005, α =

1.0239), we use Eq. (2) to approximate edge effects. Any error resulting from extension of

this formula to our data should be much less than 1% and can be ignored.

B. Tilt Effects

Because actual capacitor plates cannot be made perfectly parallel, there is a tilt effect

not reflected by Eq. (1). In our experiments, a plate separation of d = 0 signifies that the

plates just begin to touch. This point was found by finely adjusting the plate separation

distance until the resistance between the plates became zero as measured by a multi-meter.

Accordingly, d represents the minimum distance between the plates, not the average distance,

which is somewhat larger as a result of tilt. If ∆d is the average deviation in the plate

separation distance above d, then a correction can be given by,

∆C = ε0A∆(1/d) = −ε0A
∆d

d2
= −C∆d

d
. (3)

This correction is valid to the first order and is best where ∆d/d is small. However, for

very small d, even minor plate tilt can be non-negligible.

C. Body Capacitance

In addition to the capacitance due to the inner faces of the plates, the apparatus has a

small “body capacitance” of roughly 3 pF which is found by measuring the capacitance with
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the plates far apart. This body capacitance reflects the residual capacitance due to, e.g.,

the apparatus frame, probes, and the thickness of the plates and does not vary significantly

with plate separation distance.

D. Corrected Formula for Capacitance

Accounting for both edge effects and plate tilt as well as body capacitance, actual capac-

itance can be modeled by,

C = Cbody + α

(
C0 − C0

∆d

d

)
= Cbody + α

(
ε0
A

d
− ε0

A∆d

d2

)
. (4)

This reflects that actual capacitance, like idealized capacitance, should vary linearly with

plate overlap area. However, capacitance varies only roughly as 1/d. At very small d, where

tilt effect is exaggerated but edge effects are minimal, capacitance is smaller than idealized,

while at larger d, where tilt effect is small but edge effects are bigger, capacitance can be

larger than idealized.

IV. INVESTIGATIONS CONDUCTED WITH THE APPARATUS

Two experiments are performed to test the ideal capacitance equation obtained from

Gauss’s Law. Experiment I tests the relationship between capacitance and plate overlap

area, while Experiment II tests the relationship between capacitance and plate separation

distance. In both experiments, the space between the plates is filled only with air. Capac-

itance is measured using a meter with a sensitivity of +/- 1 pF. After correcting for edge

effects, tilt effects, and body capacitance, measurements are found to consistently agree with

Eq. (1) within 3%, providing strong empirical confirmation of Gauss’s Law.

A. Experiment I: Variable Area Experiment

The purpose of the first experiment is to confirm that measured capacitance is propor-

tional to plate overlap area, or C ∝ A as seen in Eq. (1) and Eq. (4). To minimize the

tilt effects, plate separation is held constant at a sufficiently large value that ∆d/d ≈ 0.

The lower plate is slid horizontally along a fixed axis to adjust the overlap area of the

parallel plates, and capacitance data is gathered. Measured capacitance is plotted against
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FIG. 2. Measured capacitance graphed as a function of the relative area.

relative area (A/Amax), and a regression is performed to test for linearity. The results, as

depicted in Fig. 2, show a strong linear relationship between capacitance and plate overlap

area (statistical R2 = .9995).

B. Experiment II: Variable Distance Experiment

The purpose of the second experiment is to verify the relationship between capacitance

and plate separation distance and, after correcting for effects, to test the validity of the ideal

capacitance equation derived from Gauss’s Law. Capacitance data is collected over a plate

separation range of 0.2-1.6 mm using the following increments: 10 µm (from 0.2-0.4 mm),

20 µm (from 0.4-0.8 mm), and 40 µm (from 0.8-1.6 mm). The lower end of the range is

selected to limit tilt effects and keep measurement errors due to the 10 µm precision limit

of the micrometer head to less than 5%. The upper end of the range is chosen so that edge

effects are relatively small and can be accurately modeled with Eq. (2). Three trials are

conducted, and the capacitance values at particular plate separation distances are averaged.

As revealed by Fig. 3, before accounting for tilt effects, edge effects, and body capacitance,

measured capacitance differed from ideal capacitance by as much as 15%. On the low-end
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FIG. 3. Percent error as a function of plate separation before and after corrections are made.

of the plate separation range, where the aspect ratio is extremely small, deviations are due

primarily to tilt, resulting in measured capacitances that are significantly lower than that

given by Eq. (1). At the high-end of the plate separation range, where tilt effect is small but

edge effects are increased, measured capacitances are higher than idealized. After correcting

for these effects, as detailed below, capacitance values are found to closely correspond to ideal

values with errors ranging from -3% to +1% and an average absolute error of approximately

1%.

1. Error Analysis

The first step in the correction process is to subtract the 3 pF body capacitance from the

measured values. Next, edge effects are removed by dividing data points by the values of

α obtained from Eq. (2). Let the partially corrected values be denoted by C’. A multiple

regression is then performed of the form,

C ′ = (C − Cbody)/α = ε0
A

d
− ε0

A∆d

d2
= β1d

−1 + β2d
−2. (5)

This yields coeffecients (95% confidence interval) of β1 = (8.80± 0.08)× 10−14 F m and

β2 = (−2.70± 0.22)× 10−18 F m2. The first coefficient, β1, is in good agreement with the
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value of ε0A (or 8.85× 10−14 F m). Meanwhile, the average deviation in plate separation,

∆d, is found from the ratio:

∆d = β2/β1 = 3.07× 10−5 m = 30.7 µm. (6)

Removing the term varying as d−2 (the tilt effect), we are left with corrected capacitances

that can be compared to the ideal ones given by Eq. (1). These show a remarkably good

fit to the ideal capacitance formula as shown in Fig. 3, with corrected capacitance values

consistently within 3% of ideal. These corrected capacitances are also seen to vary inversely

with plate separation distance, as predicted for an ideal capacitor (see Fig. 4).

Sources of error include the capacitance meter and the micrometer head. Measurement

errors attributable to the capacitance meter are most significant at large plate separation

distances but never exceed 2% (much less than 1% in the middle of our plate separation

range). By contrast, errors in distance measurements using the micrometer head are most

significant for small plate separation distances and can be as large as 5% but are typically

much smaller (approximately 2% in the middle of our plate separation range). These account

for most of the small discrepancy between the corrected and ideal capacitance values.

FIG. 4. Corrected capacitance graphed as a function of 1/d.
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V. CONCLUSION

We have designed a precision parallel plate capacitor apparatus allowing for fine variation

of separation distance and plate overlap area for use in an undergraduate laboratory or for

field work. Further, we have demonstrated two of the experiments that can be performed

with the device. After correcting for tilt effects, edge effects, and body capacitance, our

experiments yield results in strong agreement with the ideal capacitance formula, confirming

Gauss’s Law.
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