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Goals

e Discuss the transition from finite distributions of charge to continuous
distributions of charge
e Discuss what happens to matter in the presence of electric fields

Continuous Charge Distributions

We have been dealing with systems with one or two charges, or treating
more complex systems (e.g. the heart, on the problem set) like a single
point charge. Today, we get tough. Today, we discuss the transitions from
few charges to lots of charges.

Nature is build from elementary charges like electrons and protons.
However, a typical number in a volume of air or in a solid is Avagadro's
Number: 6.02 x 102! Good luck adding all of those forces and fields
together. We need tools to attack these more realistic situations. We need
calculus.

To begin, let's discuss the bulk properties of continuous charge
distributions:

e Volumes of charge: given a volume (3 dimensions) of charge, we will
speak of the volume charge density, p, whose units are charge per
unit volume, C/m3.

e Surfaces of charge: if the charge is spread out over a surface, instead
of throughout a volume, we will speak of the surface charge density,
o, whose units are C/m?.
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e Line of charge: if the charge can be described as distributed along a
single dimension, we will then speak of linear charge density, ),
whose units are C/m.

Using these concepts lets us summarize the charge distribution properties
of an extended, continuous system. Instead of saying a charge is here, at
some coordinates, and over there, at some other coordinates, we speak
instead of densities of charge along a line, surface, or throughout a volume.

Cement the concept: examples

Imagine that I have a cube, whose sides are each of length 1.0m. In each of
the following situations, tell me the appropriate bulk property of the
system:

e What is the bulk property of the system if there is a charged object
inside the cube whose strength is 10C? ANSWER: we should be
concerned about the charge per unit volume, or the volume charge
density of the system. In that case, it will be p = (10C)/(1m)? = 10C/m?3,

e What is the bulk property of the system if the same 10C charge is
distributed over the sides of the cube? ANSWER: we should be
concerned about the charge per unit area, or the surface charge
density. In that case, we need the surface area of the cube. That's
A =6 x (1m?) = 6m? Thus ¢ = 10C/6m? = (5/3)C/m?.

e What is the bulk property of the system if the same 10C charge is
distributed only along the thin corners at each side of the cube?
ANSWER: if the charge is isolated to just the corners where each side
meets, you can imagine the cube as being made from a wireframe
where each wire holds part of the total charge. Thus, the bulk property
we are concerned with is the linear charge density. We need to know
the lengths of these "wires". There are 12 such lines that make up the
cube. Thus the total length is L =12 x 1m = 12m, and
A =10C/12m = (5/6)C/m.

Summing the fields

We've used the Principle of Superposition to add together individual fields
from a series of charges. Now that we're dealing with lots of charge spread
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out over lines, surfaces, and volumes, we need a better way to do the sums.
Calculus - and specifically the integral - gives us this power.

Recall that an integral is just given in the limit of a sum of very small
pieces of a problem. For instance, if we have a bunch of small charges and
we want to find the total field at some point, P. Each infinitesimal unit of
charge, dq, is responsible for emitting its own infinitesimal piece of the
total field, dE. Thus to obtain the total field we must integrate over the
individual infinitesimal fields:

B= / dF

We know how to write the electric field of each infinitesimal point of charge
- that's just using Coulomb's Law! We have to do a transformation of
variable in the integral, from dFE to dq. That's simply done as follows:

- dE d kq . k .\ dq kdq .
dE = | — |dg=——=%)dg=| =7 ) —=dqg=—
(%) = (i) = () G2
Thus:

B kd
E = 9;

P2

This is the easy part. The hard part is being given a physical problem and
being asked to solve for the field in terms of the geometry of that problem.
Attacking real problems will involve translating the geometry of the
problem into something over which you can then integrate more easily.
Let's look at an example.

Example: a line of charge

Consider a thin wire that carries a charge. The bulk property of the wire
that we are interested in is the linear charge density, A. Imagine that this
wire - perhaps a power line or an electric cable of some other sort - lies
along the x-axis. How do we find the electric field at some point P away
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from the line?

INTERPRET: we have to start somewhere. Let's treat the wire as so long
that we don't have to worry about being close to its ends, where the
geometry changes (and is not very line-like anymore). Thus, let's call this
line infinite in length. Let's define our point P, then, as lying at a point in
space (z,y) = (0,y) Thus, it lies a distance y from the line along the y-axis.
The source charge in the problem is the whole wire.

DEVELOP: Make a drawing of the problem. We divide the wire into small
charge elements dg. NOTE: one thing we see right away is that if we
consider two charge elements lying an equal distance z along the x-axis
from z = 0, the electric fields of these two elements is equal and opposite
alone the x-axis and cancels. This leaves only the y-components of the
individual fieldsm dE, to be considered. This immediately reduces the
problem into one where we only have to find the y-component of each
infinitesimal field! Thus we only need the y-component of each unit vector,

=y/r.

Let's explore that last statement. The distance from any point on the wire
to the point P is r = /22 + y?, and the vector from that point on the wire to
P is given by 7 = (z,y), where z is the location along z of the charge element
dg, and y is the distance from the wire to P along the y-axis. How does one
obtain the unit vector from this? Recall that generally speaking, # =7/r.
Thus in our case, # = (z/r,y/r). Since we are only concerned with the
electric fields along y, we only need the y-component of this unit vector:

Ty =y/r.

EVALUATE: We have pieces. Let's assemble them. We need to relate dq to
some geometric variable so that we can perform the integration. We know
that our wire has a linear charge density of A. If a charge element has a
length dz, then X = dg/dz or dg = Adz. Thus: dE, = £4¢, =By - P g,

T2 1 (22142)3

Since the x-components all cancel out due to the symmetry of the problem,

we can write the field as E = (0, B,) where E, = [ dB, = [ "]V =Pirde. Have

a look in Appendix A to see how to do this integral.

The result is: E, = 2.

ASSESS: this is interesting. Since all the fields along z cancel, the electric
field along a charged thin infinitely long wire simply radiates outward from
the wire perpendicular to its length, with a strength that falls inversely
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with the distance y of the point P from the wire.

An infinite line is impossible, but this result does hold very well if you
study long wires carrying an electric charge linear density and make
measurements of the field far from either end of the wire. The results hold
approximately as long as we're not much further from the wire than its
length.

Matter in Electric Fields

We are constantly exposed to electric fields, whether they are the weak
ones in phones and computers, the strong ones from lightning or carpet
electric shocks, the useful ones that ignite natural gas for cooking or light
our homes. We are matter, just as much of what is around us is matter.
How does matter, as a whole, respond to electric fields?

Single charges

Let's start with a single charge, and work our way up. We can ask what a
single electric charge will do when it is suddenly exposed to an electric
field.

e PhET Simulation of Single Charge in Electric Field:
http://phet.colorado.edu/en/simulation/efield

We have some notion that an electric field and a force are related to one
another. Applying Newton's Law that F = md, we know that in the presence
of a force a mass m will accelerate. Combining this with the definition of
the electric field, E = F/q for a test charge ¢, we learn that @ = (¢/m)E. That
is, in the presence of an electric field from some source, a charge ¢ with
mas m will experience an acceleration given by this equation. Use the
PhET simulator to test the prediction from this exercise.
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This is also kind of cool, because it tells us that the amount of acceleration
varies inversely with the mass. Low-mass particles - like an electron -
experience a much HIGHER acceleration than high-mass particles (like a
proton) exposed to the same electric field and carrying the same charge. In
fact, this principle can be used to build a device that separates charged
particles based on their mass: an electrostatic analyzer.

Applications: material analysis and space weather measurements

Less-simple example: dipole in an electric field

We discussed this qualitatively last time (see PhET demonstrator). A dipole
in an electric field experiences equal but opposite forces on each end (due
to the opposite charges at each end). As a result, the dipole rotates until it
is aligned with the electric field. There is no NET force on the dipole, but it
rotates (think about pushing with equal but opposite forces on opposite
sides of a bike wheel. The wheel ROTATES, but it won't TRANSLATE (move
along a straight line).

Rotational motion is something we learned to describe in mechanics, and
we'll apply that here. A ROTATIONAL FORCE is a "torque",

T=7FxF

It's a cross-product, where 7 is the distance from the center of the rotation
to point of application of the force, and F is the force. Remember the
right-hand rule! If you take your right hand, flatten it, and point your
fingers in the direction of 7. Now curl your fingers into your palm in the
direction of F. Your thumb now indicates the direction of the torque, and is
perpendicular to BOTH the 7 and F.

The magnitude of a cross-product is given by:
T =7rFsinf

where 6 is the angle between the vectors 7 and F.

The torque tends to align the dipole with the field, in our case. Recall that

60f9 08/29/2010 04:40 PM



General Physics - E&M (PHY 1308) - Lecture Notes file:///home/sekula/Documents/Notebooks/PHY1308...

we defined the dipole moment in the last class:

~

p = (gd)d

where ¢ is the magnitude of the charge on either end of the dipole, d is the
distance between the dipole charges, and d is a unit vector pointing from
the negative to the positive charge. The magnitude is then:

p=qd

Since the vector 7 in this case has a length that is (1/2)d, we can rewrite
the mechanical torque on the electric charge due to an electric field as:

7. =7Fsinf = (1/2)dF sinf = (1/2)(p/q)F sinf = (1/2)pE sin §
The torque due to the force on the negative charge is:
7 =(1/2)(p/ — q)Fsin(m — ) = —(1/2)pE(—sinf) = (1/2)pE sin 0

So the total magnitude of the torque on a dipole in a uniform electric field
is:

T =pEsinf
and the total torque is given by:
F=pxE

In a uniform electric field, the dipole experiences a torque but no net
force. Because it takes work to rotate the dipole and align it with the field,
energy is stored in the dipole. If the dipole begins at a right-angle to the
field (x/2), the work required to rotate it to a new angle 6 is:
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W = //sze = //szsinGdO :pE[—cos9]|fT/2 = —pE cos 6

This work ends up as stored potential energy, U = W. Remebering that the
dot product of two vectors, @ and b, has a magnitude equal to abcos ¥,
where 0 is the angle between the two vectors, we can write:

U=—5-E

You see how useful is this notion of a dipole moment as a characteristic of
the system.

Dipoles in non-uniform electric fields

When a dipole is in a non uniform electric field, like the water molecules in
the field of a hair comb, a net force DOES result since each end of the
dipole experiences a slightly different force. We saw that in the comb/water
movie. This effect is extremely important in nature, especially because two
dipoles are often next to one another (e.g. two water molecules). This weak
net attractive force that happens between neighboring dipoles is called a
Van Der Waals Force. You probably studied it in chemistry, but this is why
is happens at all. Here's why it's important to understand the Van Der
Waals force.

EXAMPLE: Your First Breath Could Have Been Your Last

Did you know that, as aerobic creatures with lungs, we are almost nearly
killed by dipoles when we are born? Our lungs are extremely complex. Just
before we are born, one of the last things that happens during
development is the secretion of a fluid in the lungs - a "surfactant" - that
coats the inner lining of the alveoli (c.f. "Pulmonary surfactant" in
http://en.wikipedia.org/wiki/Pulmonary_surfactant). Without this
surfactant, the thin lining of water in our lungs (remember, water is a
dipole) would exert so much attractive dipole force on itself that after first
exhaling, we would be UNABLE to inhale again. The surfactant reduces
the attraction between water dipoles by bonding at one end with water
molecules. This relieves the surface tension in our alveoli and allows us to
breathe.
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Premature babies, born before the surfactant can be naturally produced in
sufficient quantities, have the surfactant introduced artificially into their
lungs by an aerosol spritzed into their mouths. This allows them to breath
normally. Introduction of the surfactant once is sufficient, since it's
recycled at the 90% level in infants. My own twin nephews had this happen
to them when they were born about 6 weeks premature.

Conductors, insulators, and dielectrics

We're going to talk a lot about different kinds of materials, and how they
permit electric fields to pass through them.

e Materials where charges are free to move around are conductors
o the motion of electric charge is called electric current, akin to
water currents (the flow of water through itself or another medium)
e Materials where charges are NOT free to move are insulators
e A material that contains dipoles, either natively or when exposed to an
electric field, serve to REDUCE the electric field inside the material.
These materials are called dielectrics They permit electric fields, but
in doing so weaken them. This is an important effect we'll explore more
later.

o What happens when a dielectric experiences too much field?
Individual charges in the dipoles can be ripped free, and then
become free to move in the presence of this extremely high electric
field. This is dielectric breakdown and signals the failure of the
dielectric material. Lightning, for instance, results from the
dielectric breakdown of the air between the ground and the sky
(where charge is building up on either end).
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