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Lecture 007: Applications of Gauss's Law and Conductors
SteveSekula, 8 September 2010 (created 2 September 2010)

Goals

Learn to work problems involving Gauss's Law

Working with Gauss's Law

As in all problems in physics, all the work is in setting up the question. If
you can narrow down on what's being asked, and how to translate that into
the language of mathematics (sprinkling in some physics thinking for good
measure), then you will be able to setup and solve hard problems. I'll work
two problems today to illustrate this.

Applying Gauss's Law: A Uniformly Charged Sphere

Imagine that you construct a spherical structure of charge, where the
charge is uniformly distributed throughout the volume, whose radius is .
Can you find the electric field at all points?

To attack this problem, we can first consider the geometry. We have some
charge  spread uniformly throughout this sphere. That means we have a
constant volume charge density, . Independent of the sub-volume, , of
the sphere we consider,  will be the same. One can already
suspect that this will come in handy for rewriting charge in termed of
something we can actually integrate.

There are really two "regions of interest" in this problem: points inside the
sphere, and points outside the sphere. The distribution has spherical
symmetry, and so we should be able to "easily" use Gauss's Law to solve for
the field.
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Gauss's Law works best when you have symmetry of some kind: spherical,
planar, linear.

Let's begin by writing down Gauss's Law:

Let's then consider two Gaussian Surfaces: a spherical surface inside the
charged sphere, with its own radius  ( ), and a spherical surface that
encloses the entire charge sphere and with . Just given the symmetry
of this sphere, you can already see that whatever the electric field, its
vectors will point radially outward from the center of the charge-sphere.

We need to attack that flux integral on the left-hand side. We can use what
we have just observed about the charge-sphere to start simplifying things:

First, given the spherical symmetry of the problem, we already know
that  is parallel to the normal pointing out from our Gaussian surface
piece, . Thus in the dot product,  since

. So the flux integral just boils down to .

With our Gaussian surface centered on the charge sphere, it's the same
distance from all points along the same radius on the enclosed charge -
therefore whatever the field, its value is constant across the Gaussian
surface and thus can come out of the integral, .

The integral  is going to simply yield the total surface area of a

sphere of radius , the radius of our Gaussian surface. Thus
.

And we've evaluated the surface integral.

Now we need to evaluate the right-hand side of Gauss's Law: . We
need to determine the amount of charge enclosed by our Gaussian surface.
It will matter whether  or . For , the answer is straight-
forward: , the whole charge of the sphere. What about for ?
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To tackle this, we need to take advantage of the constant volume
density of charge; that is,  is the same regardless of the volume inside
the sphere we choose to evaluate. Let's consider two different ways of
obtaining . We could consider the whole volume of the charge-sphere.
In that case,

We could also consider the Gaussian sphere for which . In that
case, [rho(r) = rho = q_{enclosed}/((4/3) pi r^3).] These two s are
equivalent, so setting them equal we find that

Let's put all of these pieces together - the right-hand side of Gauss's Law
and the left-hand side of Gauss's Law:

For :

This reduces to

E(r )

For :

which reduces to

E(r ) :

Draw the function on the board, with the linear piece for  and the
inverse-square law piece for .

Does this make sense? Inside the sphere, as we grow the size of our
Gaussian surface, we include more and more charge and we expect the
field strength to grow. Outside the sphere, we fully enclose all the charge
and just get further from the charge as  gets bigger, so we expect this to
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converge at large distances to the electric field of a point charge, , which
it does.

Imagine how hard it would be to calculate this using just the superposition
principle! It's a very beautiful and useful result. Incidentally, this law and
this solution holds for gravity as well. It's why we can treat planets as
"point masses" when were are outside of the planet's surface (as if all the
mass were concentrated at the center of the planet in a point).

But what if our charge is NOT uniformly distributed in the interior?

Applying Gauss's Law: A Thin, Hollow Spherical Shell

Imagine a thin spherical shell of charge, with an outer radius . It's thin
enough that we can neglect its thickness for this problem. What is the
electric field inside and outside the shell?

Again, this is a spherically symmetric distribution. Outside the shell, all of
the charge is enclosed again an the field outside looks just like it did for
the solid sphere of charge. We just have to concern ourselves with the field
INSIDE.

Construct a spherical Gaussian surface with radius  centered on
the shell's center. Again, for all the same reasons as in the charged
sphere the flux is just .

We're left to just evaluate the right-hand side of Gauss's Law. The
gaussian surface encloses no charge, so .
Therefore,  everywhere inside the shell!

Due to the inverse square law, at any point inside the shell the fields from
charges on the side of the shell closer to the point are exactly cancelled by
all of the fields from charges on the side further away. This is a remarkable
fact, one which can be tested through experiment (we'll discuss this later).

But it also points to the answer to why our friend in the Boston Science
Museum Lightning demonstration was not killed by the blasts from the Van
de Graaff generator: charge deposited from the lightning bolt on the cage
covered the surface of the cage due to the conductive nature of the metal
(we'll discuss why this is shortly). The field inside the case, despite the
massive bolt of lightning, was zero everywhere, and thus he was under no
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threat of physical harm.

One last problem, a revisit of an earlier one: a line of charge.

Applying Gauss's Law: A Uniform Line of Charge

This problem was kind of a pain when we did it with Coulomb's Law and
the integral . Let's tackle it with Gauss's Law.

A line of charge has cylindrical symmetry, since on the surface of a
cylinder centered on the line, it doesn't matter where you are on the
cylinder - the electric field strength will be the same because you're
equidistant from all points on the line.

Symmetry requires that the electric field from a line of charge point
radially outward, perpendicular to the line. Thus .

Let's make our Gaussian surface a cylinder.

Define the Gaussian surface as a cylinder whose radius is  from the
long axis and which has a length . This allows us to attack the surface
integral and get the flux. Consider the contributions to the flux from
the ends of the cylinder: since the normals to the ends point either in
the  or  direction, perpendicular to the electric field, there is no
flux contributions from the ends of the cylinder.
Consider the barrel of the cylinderical Gaussian surface. The normals
to the surface all point along the cylinder radius, just like the electric
field, so

and we just have to sum up the little pieces of cylinder area to get the
total area of the cylinder. The area of a cylinder, which is just a
rectangle of length L and height  (where  is the radius of the
cylinder) wrapped into a tube, is given by A ÙrL. Thus

Now we just need to determine the right-hand side of Gauss's Law,
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. We know that the line has a uniform charge distribution, and
so  considering the Gaussian surface and the charge
enclosed by the cylinder. Thus

Finally, we set the left and right sides of Gauss's Law equal and find

which yields

E :

If we recall that , then we recover the same solution as when
we applied Coulomb's Law:

E r r

Complex Charge Distributions and Gauss's Law

Gauss's Law works best when you can identify a symmetry in a problem
and exploit that symmetry to solve the surface area integral (the flux
integral). The book discusses what Gauss's Law tells us about planes of
charge, dipoles, etc. Without clear symmetry, or without reduction of a
problem to an illustrative simpler case or set of cases, it's hard to make
Gauss's Law work for you. The book discusses the example of a disc of
charge. Up close, a disc looks like a plane, and so you can say that very
near the disc the field looks like that of a plane of charge. Far from the
disc, it should resemble a point of charge electric field. There is some
transition region in the middle that's harder to compute, but you know the
transition between the plane field and the point field must occur.

Never underestimate the value of simple approximations. There is a joke
about physicists that illustrates the point. An engineer thought it would be
funny to ask her physicist friend to determine the gravitational field
around a cow, knowing that the complex shape of the cow would
immediately stump the physicist. The physicist thought about the question
for a moment, turned to the board and started drawing, saying, "OK, let's
consider a spherical cow of uniform density . . . "
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