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Lecture 016: The Magnetic Field due to Moving Charge
SteveSekula, 29 March 2011 (created 22 March 2011)

What is Magnetism?!

It was Hans Christian Oersted who is credited with setting physics and
chemistry on the path to an understanding of magnetism. While magnetism
has been observed since about 500-600 BC (in the Western world, it was
Aristotle who gave credit for the discovery of this phenomenon to a man
named Thales), it was not at all understood until the 1800s. Oersted
accidentally observed that an electric current caused a compass needle to
deflect. We can easily reproduce this experiment. Magnetism, therefore,
seems to have something to do with the MOTION of electric charge. Not
long after Oersted's publicized observation, two French scientists - Baptiste
Biot and Felix Savart - performed experiments and determined the exact
form of the force law for a steady current. We call this the Biot-Savart Law,
and we'll explore it now.

The Biot-Savart law considers a steady current moving through a conductor.
There are similarities and differences between B-S and Coulomb's Law.
Let's write Coulomb's Law for a small piece of a distribution of charge:

dE r

Draw a picture representing the situation that can be described by
Coulomb's Law (a blob of charge, considering the electric field due to a
piece of the blob).

Now draw a picture representing the situation we want to analyze in
magnetic fields. We want to know the field, , at a point P some distance, ,
from a part of the conductor ( ) carrying a steady current . Our
convention will again be that  points from the conductor element to the
point P.

General Physics - E&M (PHY 1308)  Lecture

Notes

General Physics - E&M (PHY 1308)  Lecture

Notes

~ =
1

4ÙÏ0 r2
dq

^

B ~ r 
dL ~ I 
r ̂

General Physics - E&M (PHY 1308) - Lecture Notes file:///home/sekula/Dropbox/Documents/Notebook...

1 of 8 03/29/2011 11:35 AM



Now let's think about the differences between the static charge situation
considered by Coulomb's Law and the moving charge situation in B-S Law:

In the BSL, we are considering a current element, , which is a vector
quantity (it flows along a direction in the conductor). In CL, we were
considering a piece of charge which had no direction. It was just a
number.
In the BSL, the source of magnetic field is a VECTOR quantity - current
times . In the CL, the source of electric field is a scalar quantity -
charge. We have to account for direction of motion in the BSL.
In the BSL, the field contribution of  depends on the orientiation of
the conductor to the unit vector - it depends on the sine of the angle,
specifically. In CL, we had no such oddity.

The B-S Law, which describes all of our observations, is as follows:

Here, we have a new constant that has been determined from experimental
measurement: , the permeability constant. It's EXACT value is

. Equivalent units are often used: .

There is one other important distinction between the BSL and CL. The CL
gives us the electric field in terms of isolated charge elements. But it's
impossible to talk about an isolated current element, because it necessarily
must be part of a circuit. In order to get the total magnetic field, you have to
integrate around the entire circuit to get the magnetic field at point P.
Because magnetic field is a vector, it obeys the superposition principle so
we just have to add up all the current elements:

The above is the integral form of the BSL. The magnetic field thus depends
on the details of the current distribution. Generally speaking, though, the
cross-product in this law tells us that magnetic field lines encircle the path
of the current perpendicular to its direction. Here we have another version
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of the right-hand rule:

To determine the direction of magnetic fields around a conductor, point
your thumb in the direction of current. The direction your fingers would
curl around the conductor indicates the direction of magnetic field lines.

Example: magnetic field around a straight conducting wire

Consider an infinitely long straight wire carrying a steady current I. Find
the magnetic field at a point P which lies a distance  above the wire.

Draw the wired and setup the problem. Use the new right-hand rule to
note which direction (into or out of the board) we expect the field to
point.

Begin by writing the BSL:

Let's choose CARTESIAN coordinates since we have all these handy
straight lines in the problem and because whatever the distance  of
point P above the line, it's fixed no matter where along the conductor
we are considering.

What are the unknowns?

We need to sort out expressions for , , and the cross-product in terms
of the geometry (coordinates) of the problem
We need an expression for  in terms of geometry.

Let's attack pieces. What are they? They are: (1) the distance, , (2) the
relationship between  and the geometry of the coordinate system, (3) the
direction of the magnetic field due to , and (4) the magnitude of

.
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 or  is the easiest: it's just 
Before trying to compute the cross-product from its pieces, let's think
about it a bit:

Can we figure out the unit vector for ? Both  and  lie in the
plane of the board. Therefore,  must point into or out of the board.
From the R-H rule, we expect it to point OUT - always perpendicular
to both  and . There - we've figured out the direction of the cross-
product without multiplying a single thing.
We can simplify the cross product magnitude as a result of the
previous observation, since we know it points out of the board. Thus

 where  is the angle between  and .
From the geometry of the problem, we know from trigonometry
that .

What about ? Well, the way we've setup the problem, that's just .

We have all the pieces. Let's re-write the BSL:

We can pull  out of the integral since we're not integrating it, and we're left
with:

What have we learned? We have learned that like the electric field from
a line of static charge, the magnetic field from a line of moving charge
falls of linearly with distance from the wire. But where the electric field
lines point OUTWARD from the line, the magnetic field circles AROUND
the line.

Magnetic attraction of two wires
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What is you place two parallel lines of current next to one another,
separated by a distance ? We know from the example above that the
magnetic field of line 1 at the location of line 2, a distance  away, will be:

B

The field from line 1 will be perpendicular to the current in line 2, by
construction, and we can just figure out the force immediately from:

F L B L

If the currents point in the same direction, the force between them is
attractive. If they point in opposite directions, it's repulsive.

This force can be QUITE LARGE for large currents. Engineers have to worry
about this force when designing electrical transport systems. The hum you
often hear near high-voltage/high-current devices is due to the vibration
from this magnetic force, as the current in such devices alternates (changes
sign) and thus the force changes strength at about 60 times per second
(60Hz).

Goals of this Lecture

Introduce the electric current archetype: the loop
Discuss the behavior of current loops in magnetic fields
Motivate the atomic origin of macroscopic magnetism

The Magnetic Field from a Current Loop

An infinite line of charge is not very realistic, but a current loop is very
realistic.Current loops are everywhere - remember circuits? Let's apply the
B-S law to a simple circular loop of current. The results from this exercise
will be our archetype for two things:
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the magnetic fields emitted by loops of current
the geometry of loops immerse in external magnetic fields

Let's find the magnetic field due to a circular current loop along the axis of
the circle. This is covered in Example 26.4 in Wolfson.

Let's begin by drawing the loop. Consider a point P, where we measure the
field, that is a distance  from the plane of the circle. Current, I, is flowing
counterclockwise through the loop. The radius of the loop is .

Begin by choosing a coordinate system. This problem is fully
3-dimensional, so we need either Cartesian or Spherical coordinates.
Let's choose Cartesian, since we've not dealt with spherical coordinates
yet in any serious detail. Let's define the x-axis as the axis along which
we want to measure the field; the y-axis can then point up, splitting the
circle in half, and z points outward.

We need to express , , and  in terms of the coordinates.
The only component of the magnetic field that survives along the
x-axis is the x-component. This is due to symmetry. For every
current element of the circle we choose, there is another element on
the opposite side of the circle that has a  whose component off
the x-axis cancels that same component from the original element.
Thus we only need to solve for , where  is angle
between  and the x-axis (see drawing).

How do we express ? Is it related to anything else in this
problem? I find this to be the most challenging part of the
problem, actually. Since, when we get to optics, we'll need to
dust off our trigonometry, let's attack this problem in detail.
Consider the illustration of an x-y slice of the problem below. We
see that the angle between the magnetic field piece, the current
element, AND the distance vector is 90-degrees ( ). If we then
draw the magnetic field piece at point P, we have our unknown
angle  between it and the x-axis. Extending the right triangle
symmetrically to the right of point P, we see that there is also an
angle  between the mirror hypotenuse and the x-axis. From the
properties of a right triangle, we know that . We want
to solve for . We see that . Thus, we find that .
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We now know that this is the same  as between the  and the
radius of the circle. Thus, .

Let's consider the cross-product. By construction, the angle
between the  and  is 90-degrees. Thus we already know that

.
Finally, we need . We already have that: , from the right-
triangle relationship.

We can now assemble all of these pieces into the BSL and solve for :

There is no dependence on dL anywhere in the function. Thus:

and we get our final equation:
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B
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If we dig back in Wolfson to page 335, Example 20.5 - the field of an electric
dipole along the bisecting axis of the dipole - we see something VERY
interesting:

E i

In the special case that ,

and is proportional to . In our case for the magnetic loop, when :

and is ALSO proportional to . Thus the magnetic field of a current loop -
the simplest circuit we can make - behaves just like the electric field of a
dipole. This is why we call this field a "dipole field", and this is also why we
think that the simplest magnetic field is a dipole field.
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