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HomeworkSolutions001
SteveSekula, 1 February 2010 (created 25 January 2010)

Point Distributions

Points were distributed as follows for each problem:

Problem Total Point Distribution

SS-1 10

Part 1: correct application of derivative to formula for  '(3
points)'

Part 2a: Correct application of substitution for F '(2 points)';
Correct application of chain rule '(2 points)'

Part 2b: correct application of integral to function or use of
substitution from Part 1 '(3 points)'

SS-2 10

Part 1: drawing meets requirements in problem '(2 points)', is
labeled correctly '(1 points)', and is a correct representation

of the function '(2 points)'

Part 2: correct application of the second derivative '(3 points)'
and correct answer '(2 points)'

CH2-2 5

Recognized that although emission and reception of the light
signals is simultaneous for Anna, a stationary observer sees

the receipt of the signals (not their origin) as
non-simultaneous '(5 points)'

CH2-3 5
Recognized that there are two speeds, but since they only
differ by the reported direction in each frame, there is no

need to have two distinct speeds '(5 points)'

CH2-4 5

Part a: applied either the proper time argument or the
Lorentz Transformation correctly to the hang-glider '(2

points)'

Part b: applied either the proper time argument or Lorentz
Transformation correctly to the people on the ground '(2

points)'

Part c: Commented on whether reconciliation was needed '(1
Point)'
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CH2-20 10
Applied either the Lorentz Transformation or proper time
argument '(7 points)', and obtained the correct answer '(3

points)'

CH2-21 10
Applied either the Lorentz Transformation or proper time
argument '(7 points)', and obtained the correct answer '(3

points)'

CH2-22 15

Part a: Applied either the Lorentz Transformation or proper
length/time argument '(7 points)', and obtained the correct

answer '(3 points)'

Part b: Applied either the Lorentz Transformation or proper
time argument '(3 points)', and obtained the correct answer

'(2 points)'

CH2-24 15

Part a: Applied Lorentz Transformation or Proper Length
argument '(2 points)' and obtained correct answer '(2 points)'

Part b: recognized for whom the measurement of the ends of
the pole must be simultaneous '(3 points)'

Part c: recognizes that length contraction of the barn applies
for the pole vaulter '(3 points)'

Part d: Applied Lorentz Transformation to the problem '(3
points)' and obtains correct answer '(2 points)'

SS-4 15

Part 1: Applied Binomial Transformation '(2 points)' and
obtained the correct answer '(1 point)'

Part 2: recognized the relationship between uncertainty in
time and uncertainty in distance for light signals '(3 points)'

and obtained correct answer '(1 point)'

Part 3: applied time dilation and the binomial expansion '(2
points)' and obtained the correct answer '(1 point)'

Part 4: provided a clear argument based on the answers to
the previous questions '(3 points)'

Part 5: provided a clear argument based on the answers to
the previous questions '(2 points)'

Deductions outside of the above:

1 point is deducted for failing to box the numerical answer
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1 point is deducted for incorrectly applying significant figures
other points are deducted as outlined in the homework policy

MATH AND PHYSICS WARM-UPS

Problem SS-1 (10 Points)

Calculate the first derivative with respect to  (that is, ) of the following
equation (representing the kinetic energy of a body):

E mu

SOLUTION
The first derivative of a generic function of , where  is an integer, is
given by

In this specific case, f (u) mu , so the derivative is given by

= m(2u) u

The solution, therefore, is

u

1.

When a force is applied to an object along the  direction, it is displaced by an
amount . The work ( ) done on the object is given by the equation

The force applied to the object can also be written as the change in momentum
with respect to time, , where momentum is defined as the product of
the mass and velocity, , (along the  direction) of the object at any given
moment, . The application of the force therefore changes the velocity of
the object, where velocity .

Show that the definition of the work done on the object can be rewritten as:a.

2.
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[HINT: review the "chain rule" of calculus. If a variable  is a function of ,
and  is a function of , you can change variables in a derivative, such as

, from  to  by expanding the derivative to . Also
remember that .]

SOLUTION
Let us begin by thinking about how all of the information in this problem is
related. We begin by writing down the integral that we are asked to
evaluate:

We know that force and momentum are related by F . We can
substitute that into the problem to find

Now we need to apply the chain rule, because we have an integral over one
variable ( ) and a derivative with respect to another ( ). The chain rule,
applied to this problem, lets us write

:

We can now substitute into our integral, swapping the order in which the
two distinct derivatives are written:

We can also substitute u . Finally, we can rewrite the last two
components of this integral as dx u. Finally, we arrive at the solution:

Show that

W onstant mu :

[Hint: the result from part 1 of this problem will be helpful]

SOLUTION
From the first part of this problem, we know that the derivative of u.
In calculus, an integral represents the anti-derivative operation; in our

b.
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case, the anti-derivative of  is equal to constant mu . Thus

Problem SS-2 (10 Points)

A physical wave can be described mathematically by the function:

where  is the amplitude of the wave (the maximum height above or below zero that
the wave can reach),  and  are locations along the direction of propagation and
time since the start of propagation (respectively), and  and  are the wavelength
(distance between two peaks or two troughs in the wave) and the frequency (rate at
which two peaks pass the same point in space) of the wave. This function, ,
(the wave function) thus tells you the amplitude of the wave at any point in space
and at any time.

Draw the wave function from  to , represented as  vs.  (this means
drawing two axes on your plot, where the vertical axis represents the value of 
at a given point along the horizontal axis, and the horizontal axis represents a
location in ). Label the amplitude, A, and the wavelength, , on your drawing
of the function.
SOLUTION
Begin by thinking about the function and the values it takes at key points. In
general, the cosine function takes its maximal or minimal values, , when its
argument is equal to , , and  (integer multiples of ). The function repeats
itself once its argument reaches even multiples of  (e.g. , , etc.). In order
to make a drawing of  vs. , you must consider the spatial distribution of  at a
specific time, . That is because  is a function of  as well as , but we are only
interested in  vs. . To keep things simple, let us consider the case 
(considering other values of  will shift the points where the cosine is maximal
away from integer multiples of ). Now we only need to know when the
argument is equal to integer multiples of . To figure that out, we must solve
the equation:

We can solve for  and find:

We now know that the cosine reaches its maximal value when  and its
minimal value when , and these places occur when  (maximal), 
(minimal), and  (maximal), and then it repeats. Plotting the function for

 means we should see two cycles of the function in the plot. So, finally,
we can draw the function:

1.

du
dE + 2

1 2

W (mu)du du onstant mu  =

Z
=

Z

du

dE
= c +

2

1 2

È(x; ) (2Ùx=Õ Ùft); t = A cos À 2

A 
x t 

Õ f  

È(x; ) t

x  = 0 x Õ = 2 È x 
È 

x Õ 

Æ1:0 
0:0 Ù 2Ù Ù 

Ù 2Ù 4Ù 
È x È 

t È t x 
È x t  = 0

t 
Ù 

Ù 

2Ùx=Õ n ; ; ; ::): = nÂ Ù ( = 0 1 2 :

x 

x =2: = ÕÂ n

n ;  = 0 2
n  = 1 x  = 0 x =2 = Õ

x  = Õ
x ; Õ = 0 2

Modern Physics (PHY 3305) - Lecture Notes file:///home/sekula/Documents/Notebooks/Modern...

5 of 15 02/04/2010 02:47 PM



Waves are solutions to an equation known as the wave equation. This equation
is written as:

:

Using that equation, and the wave function, solve for the velocity, , at which
the wave propagates.

SOLUTION
This problem requires you to take the second derivative of the wave function. It
is useful to remember that

and that

(x) (x):

We can write the second derivative as the act of taking the first derivate twice
in succession,

With that in mind, let us evaluate the second derivative of the wave function
with respect first to  and then to :

2.
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where in the last step the derivative of the sine function, then its argument, are
taken all at once rather than showing the steps as in the derivative of the cosine
function. We can then repeat this calculation for the second derivative with
respect to  instead of  (steps will be skipped here, but they are similar to
those shown above for the  derivative):

We now can write the wave equation as

The cosines cancel from each side, as do the  and the minus signs. This
then leaves

f

and solving for  we find

which is the statement that the speed of propagation of a wave is equal to the
product of the wavelength and the frequency of the wave.

Harris Conceptual Questions

These refer to "Conceptual Questions" from a chapter or chapters in Harris.

CH2-2 (5 Points)

SOLUTION
Let us consider the "tractable, if somewhat unrealistic . . . " possibility that in
order for Anna to actually cause the light bulbs to flash as the same time, her
brain sends light signals to her hands. In reality, the nervous system transmits
the command from the brain to muscles in the hand via electrical impulses, but
the idea is the same: the command originates in the brain and is transmitted to
both hands by signals propagating at the same speed (the speed of light, for
this problem) over the same distance. So, how does this help address the
criticism that "It makes no sense that Anna could turn on lights in her hands
simultaneously in her frame but that they don't turn on simultaneously in
another . . . "? Well, if the signals go from one place in her brain to each of her
hands, one signal is sent along the eastward direction (toward the left hand)
and the other along the westward direction (toward the right hand). In her
frame, these signals are sent at the same time and travel at the same speed to
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her hands, which then act on the signals at the same time. But to Bob, who sees
Anna moving eastward at speed , he sees one light signal traveling at  toward
the left hand, moving away at , while the other signal moves toward the right
hand, which is approaching at . Thus the rate at which the distance closes
between signals and hands is  for the left hand and  for the right hand.
Since , the signal going to the right hand arrives first, and thus that
bulb is told to fire first. Light signals have to travel at ; however, simultaneous
emission in one frame does not guarantee simultaneous arrival in another
frame.

CH2-3 (5 Points)

SOLUTION
Each observer, in their frame, agrees on the magnitude but not the direction of
relative motion. In other words, if the coordinate systems are defined so that 
and  point in the same direction, and the relative motion is along those
parallel axes, frame  sees frame  moving in the positive direction along 
with speed , while frame  sees frame  moving along the  direction at
speed . So only one speed is necessary; and only the sign differs from
frame to frame.

CH2-4 (5 Points) [HINT: keep in mind the definition of proper time when
thinking about this question]

SOLUTION
In order to answer these questions, it is useful to recall the definition of proper
time. Proper time is the time that is measured by an observer in a frame where
all of the events occur at the same place. Is there such a frame in this problem?
The answer is "yes". The events in question are comparisons of the clocks on
the ground with the clock on the hang-glider. There are two of these events,
one as the hang-glider passes over point X and the second as the hang-glider
passes over point Y. Are the ground observers in the Proper Time Frame? No -
these two events occur at different spatial locations for them. How about the
hang-glider? Yes - both the person in that frame and the observers on the
ground agree that the two events happen at the same place in the frame of the
hang-glider. Now we can can answer the questions. Answer to (a): the clocks on
the ground advance faster than yours, because in your frame events happen at
the same place and so your time is proper time, the shortest time any frame will
observe. Thus, your clocks will advance slower than those on the ground, where
events happen in different locations. Answer to (b): Since your frame is the
proper time frame, and clocks advance slower in that frame than those on the
ground, the clock at Y must be ahead of yours. Answer to (c): it might seem
natural for you, in the hang-glider, to argue that the ground is in motion and
you are at rest - therefore, your first inclination might be that the ground clocks
will be running slow. However, special relativity tells us that when events

· c 
· 
· 

c  À · c  + ·
c  + · > cÀ ·
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+x  0
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happen in the same place in a frame - and for the hang-glider, they do - that
time must be the shortest, and thus its clocks run slow. Observers in both
frames will agree that for you, events happen in the same place; thus you are
forced to conclude your time is the shortest.

Alternatively, you can argue directly from the Lorentz Transformation equations
in each frame. In frame , ground observers calculate the time measured by the
hang-glider by applying

For ground observers, the distance between their clocks at X and Y is given by
the product of the hang-glider's speed ( ) and time it takes the hang-glider to
pass between them in frame , . Thus we can reduce the equation to

Recognize that the quantity in parentheses is equal to , and you see that we
get the same answer as in the Proper Time argument:

Looking at this from the perspective of frame , where all events happen at the
same place ( ) and where the points X and Y on the ground are moving in
the  direction at speed , we find

or that the hang-glider determines that clocks on the ground will measure more
time than in frame . The frames make consistent observations of the relative
states of their clocks.

Harris Exercises

These refer to "Exercises" from a chapter or chapters in Harris.

CH2-20 (10 Points)
SOLUTION It always helps to first think about which Lorentz
Transformation equation you want to apply to the problem. Based on the
way the problem is phrased, it's natural to decide that you are in frame , at
rest with respect to Carl who is in frame  moving at . We are
interested in determining how much time passes for Carl, knowing the time
that passes on your clock. Thus the equation we want to apply is the one in
Carl's frame, relating his change in place and time to your change in time:

For Carl, he doesn't move at all so for him . His frame thus defines the
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frame where the shortest time, Proper Time, is defined. The time that passes
on your clock is . Thus the Lorentz Transformation equation
reduces to

We just need to calculate the gamma factor: . We
can now complete the calculation:

yielding the solution to the problem,

Remember, significant figures are enforced in the numerical answer. The
two numbers given in this problem - 1 and 0.5 - each have only 1 sig. fig.
Thus, their product (or division) must have only 1 sig. fig., so you can only
quote to 1 decimal place.

CH2-21 (10 Points)
SOLUTION: Again, we need to begin by specifying frames  and . The
way the problem is phrased, it's natural to assign to  the earth observer
and to  the spaceship, in relative motion with respect to  at speed

. Before we apply the appropriate Lorentz Transformation equation,
let's compute the gamma factor: . The length of the craft is
measured by simultaneously ( ) locating the ends of the ship in frame ,
and in that frame the observer finds . The correct Lorentz
Transformation equation to apply is thus

Thus, the people on the ship measure the length of the craft to be

Again, while 35m has two sig. figs., the speed has only one. Thus, the final
answer will have only one sig. fig., so you can't say  - you have to write

. As a note, you can also argue this problem using proper length. Since
the ship is at rest in , the length must be the longest in that frame, and
the length measured in  must be multiplied by .

CH2-22 (15 Points)
SOLUTION Let's again start by assigning observers to frames. Let us place
Bob in frame  and Anna in frame , in relative motion to one another at
speed . According to the way the problem is phrased, Bob (taking
into account the fact that it takes time for light from the explosion of Planet
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Y to reach him) determines that Planet Y exploded two years after Anna
passed Earth.

Answer to (a): In two years, Anna would have traveled
 in that time. Thus the distance remaining

from her to Planet Y, in frame , would be . We can use Proper
Length to solve the rest of this problem. The frame in which the Earth-
Planet Y system is at rest is , so in that frame we expect to measure the
longest distance. Anna's frame, where the Earth and Planet Y are NOT
at rest, must measure a shorter distance. The relationship is given by

. The gamma factor in this problem is . This then gives
us the answer

.
Answer to (b): Let's apply the Proper Time to solve this. All events
happen at the same location in Anna's frame. Thus her time must be the
shortest of any measured, and is related to times in other frames by

. The solution to the problem is thus

CH2-24 (15 Points)
SOLUTION Let's repeat the given facts. The pole-vaulter holds a 16ft. pole.
A barn has doors that are 10ft. apart, one at each end. The runner achieves
a constant speed before reaching the barn, and when he passes through the
barn the pole appears to fit exactly in the barn all at once.

Solution to (a): To determine how fast the pole-vaulter is running, we
can apply Proper Length. The frame in which the pole is at rest is the
pole-vaulter's frame, so in all other frames the length of the pole will be
shorter. Thus , where  is the proper length. We can rewrite
this equation to solve for :

Again, we rearrange the equation and solve for :

We arrive at our solution:
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Solution to (b): Since the pole is moving with respect to, for instance, a
pair of observers standing at each end of the barn, to measure the
length the people on the ground have to make simultaneous
measurements of the locations of the ends of the pole. If the statement is
made that the pole fits in the barn all at once, that statement can only
be true in the rest frame of the barn and observers, since that is the
frame in which the length is measured by simultaneously locating each
end.

Solution to (c): The pole vaulter is the one who sees the pole ends reach
doors at different times. The pole-vaulter sees the barn moving relative
to them, so the barn's length is contracted in that frame. That means
that the barn is shorter than 10ft. in the pole-vaulter's frame, so the
front end of the pole exits the barn before the back end of the pole
enters the first door.

Solution to (d): Let us first determine the length of the barn in the
pole-vaulter's frame. Again, let's apply Proper Length. The barn is at
rest in the earth's frame, so that is the frame where the length of the
barn is greatest (and defined as the proper length, ). Thus the vaulter
measures the length to be . When the
front of the pole exits the barn, this occurs when the back of the pole is
sticking out the first door. The amount of pole left is 
Since the barn is moving past at  (keeping a few more decimal
places for right now), the amount of time it takes until the back end of
the pole enters the barn is

Problem SS-3 (15 Points)

The 24 satellites that orbit the earth and define the Global Positioning System use
precision atomic clocks that are accurate to s, or 1 nanosecond (1ns). A
person on the earth, using their mobile phone, can usually "see" 4-12 of the 24
satellites at any one time. The satellites are moving, relative to the surface of the
earth, at  km/h.

Calculate the  for one of these satellites. It will be helpful to use the Binomial
Expansion of the gamma factor,

1.
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since the numbers involved in the calculation will be quite a lot smaller than 1.
Feel free to write your answer either as a sum of terms in the binomial
expansion or as .

SOLUTION
A satellite is moving at a speed of  km/h relative to the surface of the
Earth. This speed is very small compared to that of light, so we cannot just plug
this into a calculator and expect to get a meaningful answer. Instead, let's apply
the Binomial Expansion, which tells us that Í · =c :: The higher-order
terms are negligible compared to the second term, and the second term tells us
how much the gamma factor deviates from 1. We convert  km/h to m/s
and obtain  m/s. Writing the final answer as the first two terms in the
expansion:

Civilian GPS measurements have to be accurate at the level of 5-10m. How
accurate must our knowledge of the clocks on the satellites be in order to
achieve this level of accuracy in our position measurement? [HINT: light signals
are used by your phone and the satellites to perform the triangulation]

SOLUTION
We can think about this problem entirely in the Earth frame. All that matters
for the operation of the system is that (a) signals sent from satellites to Earth
travel at  and (b) the accuracy of the clocks on the satellites matches the
desired spatial accuracy on Earth. There are two ways to approach this
problem. Since all we need to know if the range of time accuracy needed to
achieve a range of space accuracy (5-10 meters), and since distance and time of
light signals are related to the speed of light, you need only apply .
Using the upper and lower bound on the space range (5 and 10 meters), we can
compute the upper and lower bound on the time range:

or an accuracy of 20-30 nanoseconds. The clocks themselves are accurate to 1
ns, and the accuracy needed for civilian GPS is about 20-30 times bigger than
the design of the clocks (good engineering!).

The other way to attack this problem is using propagation and calculation of
uncertainties on measured quantities (e.g. as learned in the PHY 1105 lab
class, http://www.physics.smu.edu/~scalise/mechmanual/). The equation
relating distance, time, and speed for light signals is . If the space
measurement has an uncertainty of , then we can relate that directly to an
uncertainty on the time measurement through the very precisely measured
speed of light. This leads to , and we can again solve for the target range
of time accuracy.

2.

If we measure the passage of 1 day on earth using a clock that is identical to3.
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Át m=c 0 s t 0m=c 0 s; = 5 = 2Â 1 À8 to Á = 1 = 3Â 1 À8

x t = c
Û  x

Û Û  x = c t
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the clocks on the GPS satellites, how much time have the clocks on the satellites
measured? What about for the passage of 2 days on earth? For this problem, it
will be useful to apply the Binomial Expansion again, this time to

SOLUTION
Consider the clock on a single satellite. All readings of the satellite's clock
happen in the same location in this frame, so the satellite's frame defines the
Proper Time frame. Again, the gamma factor is very, very close to 1.0 in this
problem, so we need to employ the Binomial Expansion again. Writing the
Proper Time (time in the satellite frame) as , we can write the
right-hand side as the product of time in the earth frame and the first two terms
of the Binomial Expansion of :

We already solved for the numerical value of that second term, so we can write:

So on the satellite, the clock is slower by  days, or 7.3 microseconds
(7300 nanoseconds). In two days, or 172,800 seconds on earth, the effect is
doubled to a time offset of 15 microseconds!
Is the difference between measured time on earth and on the satellites a
problem for GPS position measurements? (in other words, do you need to take
into account special relativistic effects?)

SOLUTION
Yes, it's a HUGE problem. In order to give you the accuracy needed to find, for
instance, the correct house on a street, GPS MUST be accurate down to 20-30
nanoseconds. However, the special relativistic effect on the satellites' clocks
makes them "drift" from identical clocks on earth by an additional 7.3
microseconds PER DAY! That's a drift which is about 200 times WORSE than
the needed clock accuracy. In other words, each day the satellites are off by an
additional 2km from the correct position on earth.

4.

Based on what you have learned in this problem, if humans had never
discovered special relativity before launching GPS satellites into space would
we be able to actually use the GPS system?

SOLUTION
NO. If humans had started launching satellites in the 1800s, with the goal of
using light signals from the satellites to triangulate positions on the earth, they
would have found mysterious drifts in the reported locations of positions on
earth. Special Relativity is thus an integral part of our modern lives, and

5.

 

r
1À

c2
·2

Ù 1À
2

1

c2
·2

dt t=Í  0 = d ·

 
p
1 =cÀ ·2 2

dt t  0 = d 1:0 · =c :::

Ò
À

2

1 2 2 À :

Ó

dt 1day)  0 = ( Â 1:0 :4 0 ::
À

À 8 Â 1 À11 À :
Á

8:4 0  Â 1 À11
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without knowledge of that effect of motion on space and time we would be
unable to navigate with any precision at all using satellites and clocks.
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