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HomeworkSolutions006
SteveSekula, 23 March 2010 (created 22 March 2010)

Point Distributions

Points were distributed as follows for each problem:

Problem Total Point Distribution

CH6-1 5

Recognized that a bound state means "wave function is
zero at infinity" and that boundary conditions in this
problem cannot guarantee this condition (3 Points).
Argued based on the understanding of bound states

whether or not this is a bound state (2 Points)

CH6-2 5

Applied understanding of barrier tunneling in quantum
physics (3 Points) to argue which energies represent the

possibility of being found infinitely far to the right in
quantum (1 Point) and classical (1 Point) mechanics.

SS-9 40

Part 1: recognized that this is a tunneling problem
through a wide barrier and applied that transmission

probability to solve the problem (10 Points). Solved for
the breaking force from the pressure and area of the ice

cube (2 Points), and solved for the height of the potential
barrier represented by this force (3 Points). Solved for the

kinetic energy of the ice cube and computed the
transmission probability (5 Points).

Part 2: Recognized that a 50% transmission probability
cannot be accomplished with a wide barrier, and applied

the general transmission probability for a barrier (10
Points). Inverted the equation and solved for  (10 Points)

CH8-25 20

Part a: recognized that the angular momentum of the
electron at rest is given by the spin (5 Points).

Recognized that the relativistic momentum form for  was
the correct expression to insert for  (3 Points), and

solved for  or the speed (2 Points)
Part b: Recognized that the total internal energy of an

electron is given by its rest mass (5 Points), and
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compared rest energy and literal spin energy (5 Points).

CH8-35 10
Correctly setup the integrals for the probability of the

symmetric and antisymmetric states (8 Points) and then
calculated the energies in the two cases (2 Points).

CH8-41 20

Recognized that the principle quantum number
determined the total energy of each level (4 Points) while
spin allows for different numbers of particles to occupy a

given level (10 Points). Computed the energy of the
system for each case (6 Points).

Deductions outside of the above:

1 point is deducted for failing to box the numerical answer
1 point is deducted for incorrectly applying significant figures
other points are deducted as outlined in the homework policy

HARRIS CH6-1 (5 Points)

SOLUTION

The situation depicted is unlikely to represent a bound state. A "bound state" is
one where the motion of a particle is constrained to a region by an external
force in such a way that the wave function goes to zero at infinity (probability
of finding the particle infinitely far from the well is zero). Boundary conditions
on the wave functions in the 5 regions indicated will should significant
presence of the wave function in the regions outside the walled box. Once
outside the walled region, the particle wave function is unconstrained on one
side, and thus the particle is free once it tunnels through the box walls. Since
there are places for  where the particle can achieve freedom (non-zero
probability of being found at infinity), this is not a bound state.

HARRIS CH6-2 (5 Points)

SOLUTION

For quantum particles whose behavior is defined by probability waves, the
situation where  represents one where there is a possibility of being
found infinitely far to the right; for , the wave function at  is zero by
boundary conditions on the wave function. When , the wave function can

E  < U0

E  > U1

E  < U1 +1 
E  > U1
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be non-zero at . If the particle instead were purely classical, then  is
necessary before the particle can be found at . This is because classical
particles can be treated as definite objects, not waves, and thus cannot be
found in "classically forbidden" regions.

Problem SS-9 (40 Points)

While on Spring Break, you find yourself in a sunny location with time to
kill (relaxation is SO boring). You are enjoying a university-sanctioned,
non-alcoholic, fruity drink, cooled in the hot sun by an ice cube. One of the
ice cubes, moving at a leisurely pace of about 1.0 cm/s, strikes a wall of the
glass. When the flat side of the ice cube clinks against the flat side of the
glass, a thought occurs to you. Stopping one of the passing waiters, you
ask, "Excuse me, but what is the weight of your ice cubes?" "Why," he
replies, "we pride ourselves on the fact that every ice cube is, in fact, a
perfect cube (3.0cm on a side) weighing EXACTLY 27.0 grams." "And what
is the breaking strength of your drinking glasses?" The waiter seems
puzzled as to why this matters. "Why, I checked the company's
specifications this morning and I can state unequivocally that each glass,
whose walls are 0.50cm thick, requires 50.0 mega-pascals of pressure
before it will break completely." You use this information to determine the
probability that an ice cube will tunnel through the glass and appear
unharmed on the table next to the glass. What probability did you find?
HINT: Simplify the problem by treating the ice cube as a single particle.
HINT: compute the penetration depth of the ice cube wave function into
the glass and determine if the glass represents a thin or a thick barrier.
HINT: You can treat the inside and outside of the glass as "zero-potential"
regions but you need to compute the potential barrier represented by the
glass wall, remembering that . HINT: you will encounter some
"interestingly sized" numbers in this problem. Feel free to take advantage
of the fact that  to quote your answer.

1.

How big would Planck's Constant have to be to make the probability of
passing through the glass wall be 50.0%?

2.

SOLUTION

This problem is a tunneling problem. You need to determine how likely it is for
the ice cube, treated as a single quantum particle striking a barrier, to be
found on the other side of the barrier. In order to solve Part 1 of this problem,
you need to know the potential represented by the glass wall, then apply the
tunneling transmission probability calculation to solve the problem. For Part 2,
the transmission probability is known and you have to invert the transmission
probability formula to solve for Planck's constant.

+1 E  > U2

+1 

U x = F ÁÁ

ln(Ae ) n(A)  B = l +B

Modern Physics (PHY 3305) - Lecture Notes file:///home/sekula/Documents/Notebooks/Modern...

3 of 8 04/19/2010 11:41 AM



Solution to Part 1:

Let's begin by computing the kinetic energy of the ice cube and the potential
barrier represented by the wall. The kinetic energy is given by the
non-relativistic form, since the velocity is so much smaller than that of light.
This is . The potential barrier is a little trickier. In order
to determine the potential, you have to use , where the
potential is the product of the breaking force (force required to overcome the
barrier - that is, "smash the glass") and the thickness of the glass. The breaking
force is related to the maximum pressure the glass can withstand, so we need
to know what force the ice cube would have to exert in order to break the glass.

. We can now
compute the potential represented by the glass:

.

We can already see that . Let's apply that to determine whether we can
simplify our treatment of the barrier - is the barrier wide? To determine that,
we much compute:

which is significantly great than 1. The barrier is wide.

With that in mind, we can proceed with the rest of the computation. The wide
barrier tunneling probability is

Let's compute various parts of this:

The last of these numbers is so small that in order to get any meaningful
reduction of the formula to a simpler form, we can instead compute :

since the first two terms in the sum are totally negligible compared to the last.
Thus we arrive at:
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and we see that the chance of an ice cube tunneling all at once, unharmed,
through a glass wall is (for all practical purposes) completely negligible.

Solution to Part 2:

When the probability of tunneling is 50%, the barrier is no longer wide. A large
tunneling probability means the barrier is entirely surmountable (and quickly),
so if we are to solve for Planck's constant we have to begin with the full-blown
tunneling formula when :

There is a term common to the numerator and the denominator. Let is leadingly
compute the following:

Let us solve for :

We can write the arcsinh as

From this, we can solve for :

This then yields

HARRIS CH8-25 (20 Points)

SOLUTION

Part (a):

Treat the electron as a tiny spherical shell whose mass is entirely spread over
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the shell at radius . The spin (intrinsic) angular momentum of the
electron is . We can relate this
angular momentum to the speed the shell would have to be rotating via 
and . The relationship (given on the mid-term)  will be
handy. From this, we can solve for the gamma factor and thus the speed:

which is HIGHLY relativistic.

Part (b):

The known internal energy of the electron is given entirely by its rest mass,

The internal energy represented by this rotation is given by

We see that the internal energy of the electron, sitting at rest and actually
spinning this fast, is six orders of magnitude larger than the known internal
energy (rest mass) of the electron. Therefore, it is completely incorrect to think
of "spin" as actual motion and not simply an intrinsic and irreducible property
of a particle.

HARRIS CH8-35 (10 Points)

The states occupied by the particles in the box are  and . The
corresponding wave functions are given in Example 8.2:

where the two energy levels have been used in writing the wave functions.
Following example 8.2, we can write the probability integral,

as
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Doing the integrals, we obtain:

So for the symmetric wave function, the probability is 0.43, while for the
anti-symmetric wave function the probability is 0.07.

HARRIS CH8-41 (20 Points)

The "A Closer Look" section on two particles in a 1-D box (page 301) shows
that the total energy of the two-particle system is the sum of the energies of the
individual particle states. For this problem, we need to determine the states
that each of the five particles can occupy in their lowest energy configurations,
and then calculate that energy.

SOLUTION

The quantum numbers for our particles in the box will be their principle
quantum number, , which determines the overall energy of the particle, and
the z-projection of the particle spin, , where  is the spin
quantum number of the particle. A given quantum state is labeled by ).

For the case where all particles are spin-1/2, we cannot put all of the particles
in the same quantum states. What quantum states are possible?

The first particle can go straight to the ground state, , and can have
either  or . Let's choose that the state it occupies is

.
The second particle can also go to the ground state, but only if it has
opposing spin quantum number. Thus, .
The third particle cannot go to the ground state, since it is not filled. It
must go to , and can be in state 
The fourth particle can also be in the n=2 level, with state 
The last particle cannot be in either of n=1,2, and so must be either of
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.

Since principle quantum number determines total energy, we have our answer:

What about when the spin of the particle is 1? Spin-1 particles are bosons and
can ALL occupy the same state, so the lowest energy state occurs when all 5
are in the ground state:

E

which is less than the spin-1/2 case.

Finally, we have the spin-3/2 case. Here we again have fermions which cannot
all occupy the same state, but thanks to their larger spin there are more spin
projections possible, and thus more spin states in the n=1 state. The states are:

, , , ,  (the last spin can be
projected in any way, since it's the only particle in the n=2 level.

The lowest energy state is then:

E

which is still higher-energy than the boson case, but lower energy than the
spin-1/2 case.
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