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MOdern PhYSiCS (PHY 3305) Lecture Notes

Waves and Uncertainty (Ch. 4.4-4.5, 5.1-5.2)
SteveSekula, 15 February 2010 (created 13 December 2009)

Review tags:
lecture

e We moved to a description of nature that focuses on the wave nature of

matter
o We know that the relevant dimensions of a specific problem will
lead to more wave-like or particle-like results

e The wave nature of matter is described by the Shroedinger Wave
Equation (SWE) that, like Newton's Laws or Conservation of Energy, is
motivated by experimental results and is not derivable from first
principles.

e We discussed complex numbers and functions, in preparation for
handling the complex wave function allowed by the SWE.

e We discussed the meaning of the wave function - that it represents
PROBABILITY PER UNIT LENGTH (or VOLUME in 3-dimensions),
referred to as PROBABILITY DENSITY.

Let us begin with a question about atoms
QUESTION: do atoms radiate energy all the time?

DISCUSSION: why not? After all, classically we think of the electron as
going around the atom like a planet orbiting a sun. If its orbiting, its
moving and being bent in that orbit by the Coulomb force. There is a place
where the charge is, and where it is not - the charge density is changing
and thus the electron should be radiating energy like crazy! That's what
EM predicts for such motion.

DISCUSSION: what did you learn about the atom in your homework? Can it
just be treated classically?

Answer: no. Today, we'll begin to see what happens when we think of the

electron not as being in classical orbit around the nucleus, but being
BOUND to the nucleus.
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We'll begin first by picking up our discussion where we left off and then
talking about uncertainty. Then we'll jump into what the SWE teaches us
about BOUND STATES.

The Schroedinger Wave Equation

h? 8?9(z,t) ,F(?\Il(a:,t)
=

" 2m Ox2 ot

QUESTION: what, exactly, is this equation comparing for the wave
function?

DISCUSSION:

¢ You have a second-derivative with respect to space. This is telling us
about the CURVATURE of the wave function in space.

¢ You have a first-derivative of the wave function with respect to time.
This is telling us about the change of the wave function in time.

e So the SWE relates spatial curvature to temporal variation.

Solutions to the Schroedinger Equation: Plane Waves

The whole game of using the Schroedinger equation is the same as using
Newton's laws of motion, or relativity:

e First, identify the players in the system

e Second, identify constraints on the systems - are there boundaries to
the problem, are there forces, etc?

e Third, convert the above into math and identify a solution to the
equation that satisfies all known constraints

e Fourth, with the solution in hand, compute amplitudes-squared to solve
for the measurables in the problem

The first solution we will explore is the wave function describing free
particles - particles in constant motion free of external forces. The wave
function that describes this situation is:
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U(z,t) = Aeilke—t)

where A is a constant. If we insert this into the Schroedinger Wave
Equation, we obtain the following equation:

27,2
hk ~

2m

The functional dependence on space and time cancels out, and we
conclude that this function obeys Schroedinger's equation for all space and
time, provided that k¢ and w are related as above.

So how do plane waves relate to particles? What happens if we insert:

p=hk
and

E = hw
We find:

Well, if we are describing a classical (low-velocity) particle in motion,
p =mv and we find that:

-mvr°=F

Which is just an expression that the energy of a particle whose velocity is
much smaller than that of light has energy equal to its kinetic energy. This
we already know from classical mechanics.
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The Schroedinger Wave E quation, then, is related to energy conservation
and a classical accounting of energy.

What is the probability of finding the particle at any given place in space
or time?

\I’*((I:,t)‘IJ((II,t) _ AZefi(k:vfwt)ei(k:vfwt) _ AZ

Since A is a constant, this means that such a particle is equally likely to be
found anywhere at any time.

Plane Waves as Building Blocks

What we have here is not necessarily a useful description of a real
situation, but rather a building block. The plane wave is a useful construct
because we can add many of them together to obtain a description of a real
situation. They're like building blocks that we can tweak and combine to
get what we want.

The idea of taking a simple wave, and tweaking it and adding it together
many times is not a strange idea. For instance, imagine you have a machine
that can generate only sine waves. You can make as many sine waves at the
same time as you want. You are asked to generated a SQUARE WAVE (see
slides). How do you use the sine wave to make something with sharp
boundaries, like a square wave?

The Uncertainty Principle

We can now turn for a moment away from the wave function and consider
another consequence of the wave nature of the universe. This turns out to
be one of the most profound ideas of physics.

That idea is fundamental uncertainty about the exact properties of a
system, or the exact outcome of an experiment. Recall that in classical
physics, the mechanical view of nature posited that if you know the initial
conditions of a system you can predict all future behavior of the system
exactly. Quantum mechanics offers an alternative, one which
experimentation has demonstrated to be true: you cannot know with
absolute certainty the outcome of anything, only the spectrum of outcomes.

The wave description of nature already implies uncertainty. For instance,
EM waves passing through one or two slits are forced to spread out on the
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other side. This spreading out already implies a loss of certainty in the
exact properties of a single photon once it passes through the slit.

We can make this more concrete. First, we need to quantify uncertainty,
which can otherwise sound like a nebulous business.

DISCUSSION: offer some ideas about how to quantify uncertainty (in
general), asking them to draw on their own experiences.

In physics, as in other disciplines, we use the standard deviation as a
measure of uncertainty. In general, we are interested in knowing how far
from a mean value a series of measurements will deviate.

Imagine repeating the same experiment many times. Do you expect the
result to be identical every time?

¢ in laboratories, we're usually concerned with uncertainty introduced
by random variation, or by systematic effects in the equipment that
alter the results with each measurement (e.g. response to temperature
by the equipment, etc.)

e we're going to focus on a more fundamental uncertainty, one which
cannot be removed, but the language of the two is the same

We can define the standard deviation as follows: if we are performing
repeated identical experiments to measure a quantity, Q, then in each
experiment we will measure a value @Q,. The MEAN of the measurements is
simply

where n; is the number of times a given result Q, is obtained.

The STANDARD DEVIATION is defined as:

AQz\
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Let's think about this, because math and language are usefully connected
here. This is a measure of how much measurements differ from the mean
value. You compute the distance each individual measurement lies from the
mean value, then square it, compute the means of that quantity, and take
the square root. This is where the alternative name, root-mean-square,
comes from.

We see that it serves its purpose. When measurements cluster very near
the mean, AQ is very small - should all numbers be equal to the mean, it is
zero. When the measurements spread out further from the mean, AQ gets
larger and larger. It helps us measure the uncertainty on the mean.

When we talk about uncertainty, now there is a quantitative basis for
having that discussion and not just a nebulous meaning of "uncertainty".

DISCUSSION: Wave Properties and the Basis of the Uncertainty
Principle

How can we begin to think about how the wave nature of light leads to a
fundamental concern about our certainty regarding z and p?

Re-consider the single-slit diffraction experiment. What do we learn from
the outcome of the experiment?

(see slides)

As the width increases (that is, we are less certain where the electron or
photon is on the other side of the slit), the certainty on the momentum
along the x-direction (the spread in the diffraction pattern) decreases.

Inversely, as we become more certain about where the particle is on the
other side of the slit by narrowing the slit, we become LESS certain about
the momentum along the x-direction (the spread of the diffraction pattern
gets larger and larger and larger.

So there appears to be a relationship:

1
Ap, x —
pO(Aa:

where Az represents not CHANGE but UNCERTAINTY in the value of a
position measurement (likewise for momentum).
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The experiment is not to blame for this effect. This relationship is a
consequence of the wave nature of matter.

e INCREASED CERTAINTY IN THE POSITION OF AN OBJECT MEAN
DECREASED CERTAINTY IN THE MOMENTUM OF AN OBJECT

One way to see this is to consider what happens if you draw a regular wave
and constrain more and more where the wave is - you become less and less
certain of the curvature of the wave, which is related to its momentum. In
other words, if you constrain the space of your experiment to much less
than one full cycle of a wave, how certain are you of the wavelength? Very
uncertain.

Let's just lay out the Heisenberg Uncertainty Principle, and then we can
discuss why this is and what implications it has:

AzAp > h/2

This is a theoretical limit on the precision with which some familiar
quantities can be known simultaneously. Knowing exact place means
knowing nothing of momentum:

Ax — 0;Ap— 0

DISCUSSION

Returning to the business of wave functions, the Uncertainty Principle is a
very valuable tool because it allows us to to make estimates of things with
complete ignorance of the actual wave function.

e Discuss atoms and ground states. Does the uncertainty principle
explain why there are minimum energies that electrons in atoms (e.g.
hydrogen) can have?

e Absolute rest: is that a problem (e.g. being at rest causing wavelength
to be infinite)?
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The grain of sand problem:

By visual inspection, we can establish that a 1mg grain of sand is not
moving to within 550 nm, the average wavelength of visible light.

(a) what is the minimum uncertainty on its velocity? If it were moving at
that speed, how long would it take to to travel the smallest distance
perceivable, 1 micron?

e Apply the uncertainty principle: Ap,Az > h/2. We know the upper
bound on the uncertainty on the position, 550 nm, so we can solve for
the lower bound on the momentum uncertainty:

Ap, > 9.59 x 1072 kg - m/s. The uncertainty on momentum is small
because Planck's constant is small. If Planck's constant were larger,
"quantum" behavior would become more and more apparent.
QUESTION: does the uncertainty on this grain's momentum
correspond to relativistic or non-relativistic speeds? To answer,
use Ap, = mAv,and we find that Av =9.59 x 1073m /s, VERY
non-relativistic. So that's consistent with classical physics. How long
would it take to go 1 micron? ANSWER: 3.3 million centuries. SAFE!

(b) A wavelength of 1 nm would be small enough to ensure particle
behavior in everyday circumstances. How fast would the grain of sand have
to move to have such a wavelength?

e Here we apply de Broglie's relationships, A = ik = h/p. We can solve for
speed from momentum, and find: v = 6.63 x 107'm/s. A tiny object can
appear absolutely stationary yet have a wavelength that is safely small
and thus leading to particle behavior in the classical sense.

e Discuss energy and time. Is there a corresponding uncertainty
principle? How might we arrive at it?

e Uncertainty in three dimensions: they are disconnected from one
another (each dimension has its own principle). Thus Ap, and Az can
simultaneously be very small.

The Limitation of Knowledge
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Let's summarize the limitations that quantum mechanics place on our
knowledge.

e The equations describing particles and forces (we'll add forces later)
can be very precisely stated

e The wave function encodes all of the properties of matter

e The wave function, by its nature, prevents us from knowing both
momentum and position (or energy and time) precisely at the same
time.

Discuss the two slit experiment again

e The wave function of an electron is ¥,, as established by experiment A
(the slits). We detect the electron at B, and there we measure its
position. But this only establishes ¥4, rather than measuring anything
about ¥,. In order to know the properties of matter, we have to
measure matter. Trying to figure out which slit the electron passes
through necessarily changes ¥,, and prevents the coherent
interference of the electron wave with itself when we do not know
through which slit it passes.

The modern interpretation of all of this, the Copenhagen Interpretation,
states that we do not know the position or momentum of a particle until a
measurement is made. Prior to that measurement, the particle does not
have a location - the wave function only tells us the probability of finding it
in one place or another.

DISCUSSION: other interpretations of quantum mechanics

Bound States
DISCUSSION: What is a "bound state"?
Bound states are simply cases where a particle's motion is restricted by a

force (a wall counts as a force). The motion is restricted to a finite region of
space.

e What are examples of "bound states"?

9of 14 02/17/2010 02:42 PM



Modern Physics (PHY 3305) - Lecture Notes file:///home/sekula/Documents/Notebooks/Modern...

10 of 14

o mass on a spring (Hooke's law) - for a perfect spring, regardless of
the energy of the mass it is restricted to a finite region of
movement

o gas in a box

o ball rolling between two steep hills

o etc.

We will attack some seemingly over-simple problems involving objects
bound under various conditions. These are not pointless examples. Rather,
they are the basis of solving real problems. To understand the "hopelessly
complicated" we must understand the simple. In addition, many problems
are too complex to solve exactly, but models can be made (simplified
circumstances) that do no fully explain the situation but give insight and a
lot of answers.

Again, we start with the SWE:

h? 8°9(z,t) ,F(?\Il(a:,t)
=

" 2m Ox2 ot

We have discussed plane waves:
(xz,t) = Aethe—et)

which are one solution to the equation. Substituting this solution, we
obtain:

h2k?
—U(z,t) = hw¥(z,t)

2m

Questions:

e What is the quantity h2k?/2m? Answer: kinetic energy of a particle
e What is hw? Answer: total energy of a particle

We can then write this as a suggestive equation:
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(KE)‘I’(:L‘,t) = (E)‘I’(.’E,t)

and we recover that statement that SWE has something to do with classical
energy accounting.

Extending the SWE to include forces
How might we extend the SWE to include forces?

DISCUSSION: forces and potentials, potential energy, etc.

e we can only assign potentials to conservative forces (e.g. gravity,
Coulomb but not friction).
e our extension will only work for things like the electrostatic force

Answer: add a potential energy term to the equation:
(KE +U(x))¥(z,t) = (E)¥(z,1t)
which leads us to the guess that:

h? 8°U(,t)

B 0Y(z,t)
2m  Ox?

+U(x)¥(z,t) =ih 5

DISCUSSION: In classical physics, how do we determine the outcome of
motion?

—

e Answer: solve the force equation, F =m
the external force

e For the SWE, we must solve the equation for ¥(z,t), given knowledge of
U(z). That is the task at hand in any problem.

47 for 7(t), given knowledge of

This equation is dependent on both space and time. We'll learn a trick now
to help solve problems.
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Stationary States: Separation of Variables

Our first step is to separate the space and time parts of the wave into
separate functions, multiplied times one another:

This is an assumption, but making it allows us to try to simplify the
problem and test our solutions. It does reduce the generality of our
solutions, but its advantage is a practical one: these special solutions are
often of great interest (and utility!).

We can now re-write the SWE:

n o dp()

do(t)
B %qﬁ(t) dz?

+U(2)9(2)¢(t) = ihyp(z)——

and then re-order the terms to achieve separation:

R 1 d*(zx)
2my(z) da?

o1 do(t)

Consider the following case of this equation:

What happens at (z,t) = (z,,t,) when the wave function at (z,t) = (z,t;)
allows the SWE to hold?

In that case, since the left side is constant, the right side must also be
constant and thus the SWE has a right-side which is constant:

B @) o1 dglY)
2my(z) da? TU@) = h¢(t) a C

In other words, since the left side does not change the right-side cannot
either, regardless of the value of t. C is the "separation constant".
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This would fail is U = U(«, ).
Let us now consider each part of the equation separately.

Stationary States: the temporal part, ¢(¢)

This is:
o1 de(t)
’LhMT =
or
do(t)  iC
~ar ~ wo

NOTA BENE: Eqn. 5-6 in Harris is MISSING the minus sign!

A solution to this equation is:
B(t) = N
What does all this mean? Write the solution in terms of the Euler Equation:
e {CRY — cos((C/R)t) —isin((C/h)t)

We see that C/h represents a pure frequency (e.g. 2nf). That means
C =2rhf = hw = E.

This means that when we separate variables, we are in fact FOCUSING ON
STATES WITH WELL-DEFINED ENERGIES. The separation constant IS
that energy.

According to the separation of our original wave function, we can now
write:
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(e, 1) = (x)e "

for the wave function. We haven't considered interactions with the
potential yet, so ¢(z) is still general and unsolved-for.

DISCUSSION: what is the probability density of this wave function?

Answer:

e [s there time dependence in the probability?

o No - it disappears under the case we can separate space and time
components of the wave function

o The properties of such objects do not change in time - they are
"stationary states"

e What are the implications for, say, electrons in an atom?

o The electron is bound by the coulomb force to the atom. That
potential is time independent. Classically, as it whizzes around the
nucleaus is should be losing energy. But quantum mechanics says
that's not the case: it tells us that the electron can appear in many
places around the atom (¢ («)), but its energy is constant and
well-defined. The electron is not orbiting, in the classical sense, but
rather in a probability cloud around the nucleus. If the probability
density is constant, the charge density is constant, and if the
charge density is constant, EM tells us it radiates no energy.

Wild stuff, a beautiful description of exactly what is observed about atoms.

Stationary States: the spatial part, y(z)

We cannot say anything specific about ¢(z) without U(z), so that is where
we shall go next. There are few simple cases for U(z), but we'll start with
them now and see what they teach us about nature.
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