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Matter in Motion (Ch. 5.8, 6.1-6.3)
SteveSekula, 1 March 2010 (created 13 December 2009)

What are Waves Doing?

We can now turn to step four in solving quantum problems: making
predictions from the wave function. This boils down to the following
actions:

Determining "EXPECTATION VALUES" (an average of possible
outcomes)
Defining operators that "act" on the wave function to determine
outcomes

Where are you likely to be? Expectation Values

We have already, in our discussion of normalization, talked about how to
compute the total probability of finding the particle somewhere in the
experiment. To do this,

we define the probability of finding the particle in an interval 
around a point  as .

If we integrate over all allowed , we should obtain 1.0 from the integral.

What is we want to know the expectation of finding the particle around a
given point, ? We can then instead compute the expectation value of ,
defined as:
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This symbol on the left is the symbol for "expectation value." Be careful -
although this is mathematically equivalent to computing the average value
of a function , we are not computing averages of particle behavior in a
system. Rather, we are interested in knowing how likely it is to expect to
find the particle in a given region. You can't average a single particle's
behavior without watching it continuously, and as we know this changes
the parameters of the system.

The expectation value, rather, is strictly defined as follows:

If the expectation value of a particle is the value we would obtain if
were were to begin a particle in state , find it, start again with a
particle in state , find it again, and so on, repeating the same
identical experiment over and over. The expectation value is a number,
not a function, since we integrate over .

By the same logic, the expectation value of the square of the position is:

We are interested in this square because, as in statistical problems, we can
use it to define UNCERTAINTY. For instance:

Keep in mind that  is a VALUE, not a FUNCTION. This let's us manipulate
this equation into a convenient form.

This is a good definition of uncertainty for several reasons:

The integral is only zero if the integrand is zero
When the wave function is spread out over space,  also become
broader and broader

That's a good definition of uncertainty (we have to pick something!).
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We can manipulate this now into an easier-to-calculate form by using:

We get three integrals:

The first integral is just , the second integral is just , and the third is 1
due to normalization. This yields:

So it boils down to just computing two integrals and taking the square root
of the differences. We only need two pieces of information:

The average of the square
The square of the average

Any function of position can also be inserted, so that we might determine
the expectation value of the function for that particle:

Where are you going? Operators

EXPECTATION VALUES are mathematical tools that allow us to connect
the form of the wave functions of OBSERVABLE properties of a quantum
system, such as position or momentum. Generally speaking, if you have
some quantity Q you want to determine in an experiment, and you want to
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predict the expectation from the wave function,

 is an OPERATOR - a function that acts on the wave function and
represents the act of measuring a property, Q, of the system.  acts on

, and returns a function which is then multiplied by the complex
conjugate of the original wave function to determine the probability of that
outcome. Schematically:

 is the act of making a measurement, which puts the wave
function into some definite state

 is the probability of that outcome, given the original
wave function

You then integrate and determine the expectation value for that
measurement.

What are some operators?

Position Operator

This is simply , as we used in the examples above to determine .

Momentum Operator

There is a derivation of this result in Appendix E of Harris, but we'll state
the result:

Energy Operator

The result is:
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Functions of Operators

Functions of the operator are also possible. For example

The Shroedinger Wave Equation in Operator Form

We may now re-write the SWE in operator form, since the above operators
all appear in the SWE:

Where is the Plane Wave going?

We can use this language of operators to answer some basic questions
about wave functions. Let's consider the plane wave - a particle traveling
free of forces. Originally, we wrote down a plane wave that looked like this:

How do we know what direction it's traveling in? Is it going forward (in the
positive x-axis direction) or backward? We can use the momentum operator
to tell us!

So from this we find that the momentum returned by the operator is:

Which is positive! Aha, so we can then easily write down the formula for a
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wave function traveling in the NEGATIVE x-direction:

We will now immediately apply this to a real-world problem: a free particle
suddenly encountering a barrier.

Plane Waves and Square Barriers

A barrier is here defined as a region where the potential energy suddenly
increases over its value in other parts of space.

Demonstrate the creation of a barrier using the PhET simulator for
quantum waves

In the PhET simulator for quantum tunneling, begin by setting the
kinetic energy of the wave (green line) to something like 0.75. Set the
barrier potential to zero. Set the simulator to use plane waves.
You should have a plane wave traveling from left to right unaffected in
its behavior. The probability of finding the wave should everywhere be
1.0.
Now, slowly raise the barrier. Discuss and describe the effect on the
plane wave when the barrier is STILL less than its kinetic energy.
DIscuss what the class expects to happen when the barrier is raised
above the kinetic energy. Appeal to previous discussions of potential
wells to guide their answers.
Now, raise the barrier potential above the kinetic energy. See if their
predictions came true.

Switch to a wave packet - this will allow you to really visualize the
motion of the matter wave, its probability, and then make quantum
measurements.
Make a quantum measurement. This is equivalent to "applying the
position operator" and determining where the particle is (say, by
sending in a photon or "looking" for the particle to strike some detector
medium and interact with it in a well-defined location). See if the
particle is ever found beyond the barrier.
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A wave packet is simply the sum of a number of plane waves, with different
contributions from plane waves of different frequencies:

A few important things come out of this discussion:

Left of the barrier ( ), where the particle originates, the wave
function has two components: the initial incident forward-going plane
wave, and a reflected part that is backward going. Thus:

We can define the REFLECTION COEFFICIENT as the ratio of the
intensities of these two waves:

On the right side of the barrier ( ), there is only a forward-going
component - the transmitted wave. This is given by

The TRANSMISSION COEFFICIENT is then defined as

The sum of  is a physical requirement on the problem, since
the particle has to be found SOMEWHERE.

Simplifying Tunneling Problems

The discussion of Tunneling in Harris is lengthy and detailed. You are
STRONGLY encouraged to read through this. However, in class I only
emphasize the simplified case where the barrier is wide.
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What does it mean to be a "wide barrier"?
The condition for a wide barrier is that the length, L, of the barrier
be SIGNIFICANTLY LARGER than the penetration depth of the
wave function in the barrier,

In that case, the transmission probability holds a much simpler form than
the general one discussed in Harris:

The Application of Quantum Tunneling

Let's close today's lecture with a discussion of APPLICATIONS of the
quantum tunneling phenomenon. We've already mentioned on of these in
class a few times, so we'll start with that:

The Scanning Tunneling Electron Microscope (see slides)

A tip is brought very close to a sample surface (within 4-7 angstroms)
The wave functions of the electrons on the tip and those on the surface
overlap
as the tip is scanned over the surface, the height between the tip and
surface changes
This changes the potential barrier
The changes in potential barrier create changes in probability of
tunneling electrons from tip to sample, and vice versa
This leads to changes in tunneling current, which are read out and
interpreted as changes in surface features in the material.

Alpha Decay (Nuclear Decay)

Alpha decay is the emission by an atom of a Helium Nucleus (2 protons and
2 neutrons, total electric charge +2e). It happens spontaneously to
unstable nuclei like that of Uranium-238 (U238 decays to Thorium 234 and
an alpha particle). Why?

1 < L L <
Î

L
= Ë =

Öh

p
2m(U )0 ÀE

T 6  = 1
E

U0

1

Ò
À E

U0

Ó
eÀ2L =Ö

p
2m(U ÀE)0 h

Modern Physics (PHY 3305) - Lecture Notes file:///home/sekula/Documents/Notebooks/Modern...

8 of 10 03/15/2010 02:58 PM



Classically, the energy of the alpha particle was predicted to be 35
MeV once ejected from the nucleus. This is because it would take at
least this much energy to overcome the strong nuclear force holding
together the nucleus and thus escape from the nucleus.
Experimentally, the energy of alpha particles was found to be much
less - 4-5 MeV. Why?
Quantum mechanics offers the answer: you don't HAVE to have 35 MeV
to escape the nucleus. You just need to have energy and run into the
potential barrier (basically, the outer diameter of the nucleus)
sufficient numbers of times to tunnel out of the nucleus with a finite
probability.
Calculation of decay rates of the nucleus using tunneling agree
perfectly with the experimentally observed values for nuclear decay
rates to alpha particles and other nuclei.

The explanation of alpha decay was a triumph of quantum mechanics.

The Tunnel Diode

Works by designing a conducting device with an irregular material
interface that prevents the free passage of conduction elections
through the material.
At zero voltage, the barrier presented by the material interface is
tunneled symmetrically by particles from either direction
With voltage applied, the barrier becomes asymmetric (with overall
potential on one side of the barrier higher than on the other).
Tunneling proceeds moreso in one direction then the other, and this
happens instantaneously
This is useful in high-frequency electronics, where you otherwise have
to rely on slow, thermal effects to obtain the same non-linear current
behavior through a device.

The Tunnel Junction - SQUIDS

There is a far more useful device than a tunnel diode: a SQUID. This
consists of two superconductors separated by an insulating barrier. This
configuration is known as a JOSEPHSON JUNCTION.

Superconductivity is described by the long-distance pairing of
electrons in a solid.
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In the Josephson Junction, PAIRS of electrons tunnel through the
barrier
These junctions are the basis of a class of electronics devices known as
SQUIDs - Superconducting QUantum Interference Devices.
The SQUID combines two Josephson Junctions, and makes the
relationship between the electron pairs very sensitive to things like
magnetic fields - even very weak ones.
SQUIDs are therefore excellent devices for detecting weak/small
magnetic fields, as from the human heart and brain. SQUIDs can detect
fields as small as  (refrigetator magnets are about 0.01T and
organic magnetic fields are at the level of .)

Next Time

The Discovery of Spin (Ch. 8.1-8.3)
Coming Soon (after the break):

Statistical Mechanics, or "What Happens When a Bunch of
Subatomic Particles Can Do Things"
Solid-State Physics: quantum mechanics and structure of atomic
matter
Nuclear Physics: quantum mechanics and the structure of the
nucleus
Particle Physics: quantum mechanics, relativity, and the origin and
fate of the cosmos
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