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Think Big: Statistical Mechanics I (Ch. 9.1, 9.3, and Appendix J-8)
SteveSekula, 16 March 2010 (created 16 March 2010)

Review

Let's begin with a post-Spring Break refresher on spin. I want to spend a
little extra time on this because it's an important concept going forward
and I want things fresh in your mind.

The Atom

A discussion of the atom, in lieu of non-relativistic quantum mechanics and
the SWE, revealed that for each dimension in which the problem is studied
(e.g. 3 dimensions of space), we obtain a new quantized thing - a new
QUANTIZATION CONDITION. From the atom, with its spherical symmetric
Coulomb Potential, we obtained:

Principal Quantum Number, , from the radial coordinate (r)
Total Angular Momentum (L) Quantum Number, , from the polar angle
(angle of the electron from the  axis)
Z-component of Angular Momentum ( ) Quantum Number , , from
the azimuthal angle (angle around the z-axis in the x-y plane)

The rules for relating quantum numbers to quantities were:

Total energy is related to , just as in our square well considerations
Total angular momentum is given by , where

 is given by , where 

We also observed that , and that this is because of the uncertainty
principle (if , we know the total momentum in the z-direction is
exactly zero and we know the wave function is entirely confined to the x-y
plane (z=0), and this is not possible).

Testing Angular Momentum Quantization
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We then discussed how you look for angular momentum quantization, and
we talked about the Stern-Gerlach experiment. We predicted that putting
hydrogen atoms into this experiment, prepared in a state of , would
lead to no deflection of the hydrogen atoms by the non-linear magnetic
field. However, in reality there is a bifurcation (a splitting in two) of the
beam, even when ! We attribute this to an INTERNAL ANGULAR
MOMENTUM QUANTITY intrinsically carried by the electron, proton, etc,
called "SPIN".

Spin

Spin has no classical analog. As your homework #6 illustrates, it DOES
NOT correspond the the actual rotation of the electron. It is a name for a
thing for which we have no equivalent, but which behaves AS IF the
electron were a top that cannot be stopped or sped up.

Spin is just like orbital angular momentum, L:

, 
, 

Wave Functions in Lieu of Spin

We then re-thought the wave function and realized that spin has to be
incorporated into it. We wrote:

Missing close brace

Experimentally, we know that the spin of the electron (and many other
particles) is s , which means that an electron by itself already has two
possible states of : spin-up, or S Ö, and spin-down, or . So all
other things being equal in an atom (two electrons in the same orbital
position in an atom, for instance), there are still two possible internal
quantum states the electrons can occupy. This fact give RICH structure to
the atom, and is in fact the basis of chemistry.

Identical Particles

We then confronted a problem that is also unique to quantum mechanics:
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identical particles. Since we can use a Sharpie to mark which electron is
which, all electrons are essentially indistinguishable. For instance, if I tell
you there are two electrons in an otherwise empty box, separated into
different halves of the box by a partition, and then I ask you to close your
eyes and open them later, is there an experiment you can conduct to figure
out whether I swapped the electrons?

The answer is "no," and this has consequences.

Since two electrons are IDENTICAL, we have to assert that the laws of
nature cannot depend on whether Electron A is doing something that
Electron B could be doing, or vice versa. Nature should be "democratic" in
this way. But if we try to write a two-particle wave function describing two
electrons as

where 1 and 2 label the electrons, we get into trouble, since there is no
guaranteed that:

That is, that the outcome of a measurement is independent of which
electron (1 or 2) is where. The example is to consider two electrons in an
infinite well, one in the ground state and another in the first excited state.
Try swapping them and see if the above is invariant under that exchange.

Instead, we have to construct multi-particle wave functions that satisfy:

Or nature will "know the difference" when two electrons swap roles. We
constructed two kinds of wave functions, based on this requirement:

(the symmetric wave function) and
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(the anti-symmetric wave function).

We observed that symmetric wave functions allow two particles to occupy
the same quantum state ( ) with non-zero probability, but the same is
NOT true for anti-symmetric multi-particle wave functions.

Spin and Multi-Particle Systems

it has been shown theoretically, and demonstrated experimentally, that
when a multi-particle system consists entirely of identical half-integer-spin
particles (FERMIONS), the total wave function is ANTISYMMETRIC.
Likewise, it has been shown theoretically and experimentally that when a
multi-particle system consists entirely of identical integer-spin particles
(BOSONS), like photons, the total wave function is SYMMETRIC.

This leads to the idea of the Pauli Exclusion Principle: identical fermions
cannot occupy the same quantum state. It's not that they repel one another
- it's that their wave functions must configure in such as way as to give
zero-probability of being in the same state where they DO overlap. This
leads to higher-curvature wave functions (functions with implicitly higher
frequencies and shorter wavelengths), and this fermion systems tend to
have more internal energy than bosonic systems. This same idea is behind
the idea of a Bose-Einstein condensate, where a large number of identical
bosons all enter into the same quantum state and behave as one, single
wave function in a single state.

Describing Multi-Particles Systems - Statistical Mechanics

We are surrounded by a vast number of particles. As physicists, we are
concerned with making predictions about the properties and behavior of
systems where the NUMBER OF PARTICLES IS LARGE, typically
Avagadro's Number ( ).

We want to make STATISTICAL predictions based on the laws of
MECHANICS

We will see that quantum ideas, such as spin, will play important roles in
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the behavior of large systems. But first, we need to develop a language for
describing and studying such systems. That language is statistics and
probability.

Coin Flips

We begin with the simplest example of probability. Imagine a perfect coin,
where the chance of landing heads or tails is exactly 50%. What is the
chance that the coin will land heads up if 5 flips are performed?

ANSWER:  where  is the probability of heads and  is the number of
flips. Each flip is independent (doesn't depend on the outcome of the
previous flip), and so the probability just multiplies. P = 3.1%.

Fun example of the maddening coin toss: the film "Rosencrantz and
Guildenstern Are Dead" depicts a coin which, when flipped, each time
lands heads - 92 times in a row. I always took this to mean that they are
thinly aware that they are not acting outside of the force of the author
(Shakespeare), who has a path set for them (death) from which, despite
their actions, they cannot deviate - chance plays no role in their fate.

Building on Coin Flips - Parking Cars

Let's park some cars. Imagine we have N cars and N spaces in which to
stick them. How many unique arrangements of the cars are their?

ANSWER: we can put any of N cars in the first space, N-1 in the
second, etc. Parking just TWO cars already has N(N-1) possibilities!
The total number of possibilities is .
Factorials are part of the language of probability, and will play a
leading role in our discussions. It is critical to build comfort with them.

Let's make the problem slightly harder, shall we? What if we designate 
of the N spaces as some kind of special zone - like, cars that park there get
coupons on their windshield, or something like that? For a given
arrangement of all cars in the parking spaces, there will be  cars in those
spots. But it doesn't matter what ORDER those three cars park in the 
spots - they're going to get coupons, so long as they park in those three
spots. So now we can ask: how many arrangements of those  cars are
there such that the remaining  cars are unaffected?

ANSWER: .

P  = pn p n 
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Let's go one step further. How many arrangements of the N cars are there
result in a unique group of people getting the coupons? Well, there are 
arrangements of the N cars in N spaces, for each there are 
arrangements of cars in the N_i spaces that leave the rest unchanged
(those same three cars will all get coupons regardless of how they are
arranged in the spaces).

ANSWER:  Work an example of 4 cars to demonstrate this.

Now, imagine that two different establishments run coupon deals, and each
designate different groups of  and N  spaces for their rewards. How many
arrangements of N cars will result in unique people getting the coupons?

ANSWER: N !=(N !N !)

In general, if you have N things that can be arranged into M groups:

A typical case is M=2 - a two-state system - where we define the number of
objects in one state as  and the number in the other state as ,
yielding:

This is called the BINOMIAL COEFFICIENT of such a state, and is the
number of ways that state can be achieved. It is often written using the
notation:

A Two-State Multi-particle System
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Let's go back to thinking about particles. We have some language now that
we can use to discuss the number of unique ways that a given state is
possible. By "state", I mean a specific way of arranging particles into a set
of "boxes" (e.g. energy levels, positions in space, etc).

Consider a gas that is trapped in a box. Imagine drawing a line down the
center of the box and partitioning the gas into two halves. You can then
ask questions like, "What is the chance that half the gas molecules are on
the left side or the right side of the box?" or "What is the chance that all
gas molecules are on the right side?"

Let's define  as the number of molecules in a gas, and  the number of
those molecules present on the right-hand side of the box. Let's consider a
gas of just four molecules, and answer some of these basic questions:

What is the number of ways that all particles can be on the left-hand
side of the box?

ANSWER:  for our problem, and we are interested in

 and . Thus: . There is ONE way of
obtaining this case

What is the number of ways that 1 particle can be on the right-hand
side?

ANSWER: . There are four ways this can
happen.

What is the number of ways that half of the particles can be on the
right-hand side?

ANSWER: W !=2!2! . There are six ways this can happen.

What do we observe?

ANSWER: The more uniformly distributed the system, the more chances
there are to be in that state. This observation extends to even larger
number of particles, but is nicely illustrated here.

In fact, the more particles, the less likely you are to wind up in extreme
cases where all gas molecules are on just one side of the room. We can
know properties much better as the number of participants increases.

Statistical Mechanics: Definitions

We have seen how increasing the number of objects to a large number
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(we'll be concerned with Avagadro's number, typically), makes it easier to
make predictions about the state of the system. Let us make some
definitions:

A THERMODYNAMIC SYSTEM is one in which the number of particles
is large enough that predictions become precise

properties under consideration are macroscopic properties, such as
temperature, pressure, and density.
STATISTICAL MECHANICS is an area of research that informs
many other areas, but is it's own study in physics. We will need it
going forward to discuss solids and gases, so we'll pause from
quantum mechanics for a bit to learn this tool.

Our concerns: energy distributions
generally, the higher the energy of a state, the fewer the number of
particles occupying that state.

States:

Reliable Predictions: Example

See slides for demonstration of the reliability of predictions for large
numbers of weakly/non-interacting particles (systems where particle states
are not correlated).

Micro-states and Macro-states

Each "way" of obtaining a distribution in which (as above) N N  is a
"micro-state." Think about the parked cars (see slides).

The micro-state is the state of the system given complete microscopic
knowledge of the individual particles. In the two-sided room, each
particle is either a left-side or a right-side particle.

Can we know the micro-state of a gas?
ANSWER: not realistically. We know what limits quantum mechanics places
on exact knowledge about each individual particle.

We therefore are more interested in the "macro-state" of the system - the
number, or concentration, of particles on each side of the room, for
instance.

The macro-state describes an overall condition of being, achieved by

R = 2
1
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many possible micro-states. To know the macro-state is to know
properties that don't depend on the exact microscopic states of
individual particles: number, energy, volume, average pressure,
average temperature, particle density.

Let's think about our four gas molecules again. The macrostate  has
the most corresponding micro-states that achieve it, while the case 
has the fewest micro-states that achieve it (there is 1).

The macro-state that corresponds to the most micro-states, where each
micro-state is equally probably, is the mostly likely macro-state of the
system. It's the most probable state of the system. This is called the
EQUILIBRIUM STATE.

Equilibrium

If left alone (no external forces), a thermodynamic system eventually comes
to EQUILIBRIUM, the state where its properties (pressure, temperature,
density) do not change with time.

DISCUSS what happens if you prepare the room such that all particles
start on one side.

later, left unaffected by external forces, the particles will end up on a
micro-state that yields the most probably macro-state - that's simply
because there are more micro-states available to that macro-state, and
it's highly unlikely to end up back in the state where all gas is on one
side of the room again.

This defines equilibrium.

The same argument applies to energy states. If we prepare a system of
atoms such that half are in their ground state and the other half are in
their 37th energy level, eventually they will all wind up in whatever the
most-probable state is for the system.

Our next study will focus on EQUILIBRIUM ENERGY STATES.

Next Time

The Boltzmann Distribution

N  R = 2

N  R = 0
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Classical averages - average speeds and densities, without regard to
the indistinguishability of particles
Quantum distributions - how do indistinguishability and quantized
properties affect nature?

Reminder

Choose your in-class presentation topic by Friday!
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