THE DISCOVERY OF SPIN

Prof. Stephen Sekula (3/4/2010) Supplementary Material for PHY 3305 (Modern Physics) Harris, Ch. 8.1-8.3

TABLE OF CONTENTS

- Presentation
 - guidelines
 - · ideas and how to have them
- Review of last class
- The spectral mystery
- The hydrogen atom in 15 min.
- New Quantizations
- The Stern-Gerlach Experiment
- The Exclusion Principle

REVIEW

- . We discussed learning from the wave function
 - expectation values
 - operators
- We applied lessons from the infinite well and harmonic oscillator to new problems:
 - barriers
 - tunneling
- We discussed applications of matter in motion
 - scanning tunneling microscope
 - . tunnel diode and SQUID
 - nuclear decay

"BALMER LINES"

Balmer's empirical relationship:

$$\frac{1}{\lambda} = 1.097 \times 10^7 \, m^{-1} (1/4 - 1/n^2)$$

we can write:

$$E = \frac{hc}{\lambda} = (13.6 \text{ eV})(1/4 - 1/n^2)$$

Simplified model of hydrogen (ala Ernest Rutherford)

THE SHROEDINGER WAVE EQUATION

 $\frac{-\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar\frac{\partial\Psi(x,t)}{\partial t}$

THE HYDROGEN ATOM

Cross section of a hydrogen atom

SPHERICAL POLAR COORDINATES

THE 3-D SWE

THE HYDROGEN POTENTIAL

$$U(r) = \frac{-1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

NEW QUANTIZATIONS

- One-dimensional problems have one quantum number (e.g. "n")
- 3-D problems need three quantum numbers:
 - (n, l, m_l)
 - Think of them as "radial", "polar", and "azimuthal"
 - Total energy (n), total angular momentum (l), and angular momentum along the z-direction (m_l) are all quantized in the atom

NEW QUANTIZATION: AZIMUTHAL ANGLE, ϕ

NEW QUANTIZATION: POLAR ANGLE, 0

Considerations of the polar-angle-only
SWE leads to:

$$|L| = \sqrt{l(l+1)}\hbar$$

- Only certain TOTAL angular momenta are allowed
 - quantization of total angular momentum
 - also: $L_z \leq L_1$ so $m_1 = 0, \pm 1, \pm 2, \dots, \pm 1$

VISUALIZING L,Lz QUANTIZATION

WAVE FUNCTIONS (SOLUTIONS)

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_\ell^m(\vartheta,\varphi)$$

General Laguerre Polynomials (all radial)

> Spherical Harmonics (all angular)

HYDROGEN ORBITALS (2-D)

ENERGY LEVELS

$$E_{n} = \frac{m_{e}e^{4}}{32\pi^{2}\varepsilon_{0}^{2}\hbar^{2}} \frac{1}{n^{2}} = 13.6 \,\mathrm{eV}\frac{1}{n^{2}}$$

(n = 1, 2, 3, ...)

PROVE IT

- Quantization of angular momentum was a new concept
- Prove it! Prove that it's quantized!
 - The Stern-Gerlach Experiment

MAGNETISM AND ANGULAR MOMENTUM

- Consider a loop of current
 - a single electron going in a circle
 - what is the "magnetic moment" (a susceptibility to magnetic force)?
 - consider a dipole in a magnetic field

 consider what happens to the ground state of hydrogen in a field

STERN-GERLACH EXPERIMENT

ROADMAP

- Statistical Mechanics
 - . or, "what happens when a bunch of particles do stuff"
- . Solid-state physics
 - . quantum mechanics and the structure of atomic matter
- Nuclear physics
 - . quantum mechanics and the structure of the atomic nucleus
- . Particle physics
 - quantum mechanics, relativity, and the fundamental structure of the universe

NEXT TIME

- Statistical Mechanics
 - Probabilities and Thermodynamics
 - The Boltzmann Distribution
- Reading: Harris Ch. 9.1-9.3