NUCLEAR PHYSICS: STRUCTURE, BINDING

Prof. Stephen Sekula (4/6/2010) Supplementary Material for PHY 3305 (Modern Physics) Harris, Ch. 11.1-11.2

TABLE OF CONTENTS

- Review
- Models of the atom
- Scattering
- Protons and neutrons
- Binding: the Deuteron
- Data vs. Models

PLUM PLIDDING MODEL

ERNEST RUTHERFORD

"It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you. On consideration, I realized that this scattering backward must be the result of a single collision, and when I made calculations I saw that it was impossible to get anything of that order of magnitude unless you took a system in which the greater part of the mass of the atom was concentrated in a minute nucleus. It was then that I had the idea of an atom with a minute massive centre, carrying a charge."

-Ernest Rutherford

PROTONS AND NELTRONS

PROTON

Charge: +e

Mass: 1.672621637(83)×10⁻²⁷ kg 1.00727646677(10) u

> Spin: ½

Discovered: 1919

NELTRON

Charge:

 \cap

Mass: 1.67492729(28)×10-2 kg 1.0086649156(6) и

> Spin: ½

Discovered: 1932

BINDING: DELITERON

DELITERON

Charge: +e

Масс: 2.013553 u Sum of the masses of the proton and neutron: 2.015941 u

Difference of the total mass of the parts and the whole:

 $m_f - m_i = 0.002388 \,\mathrm{u}$

Binding energy: (divide by A to get BE per nucleon)

$$BE \equiv m_f c^2 - m_i c^2 = 2.22 \,\mathrm{MeV}$$

Figure 11.12 Binding energy per nucleon versus Z and N.

N

Figure 11.14 Binding energy per nucleon versus A.

NEXT TIME

- Models of the Nucleus
- Applications of Nuclear Theory
- Radioactivity
- Harris: Ch. 11.3-11.6