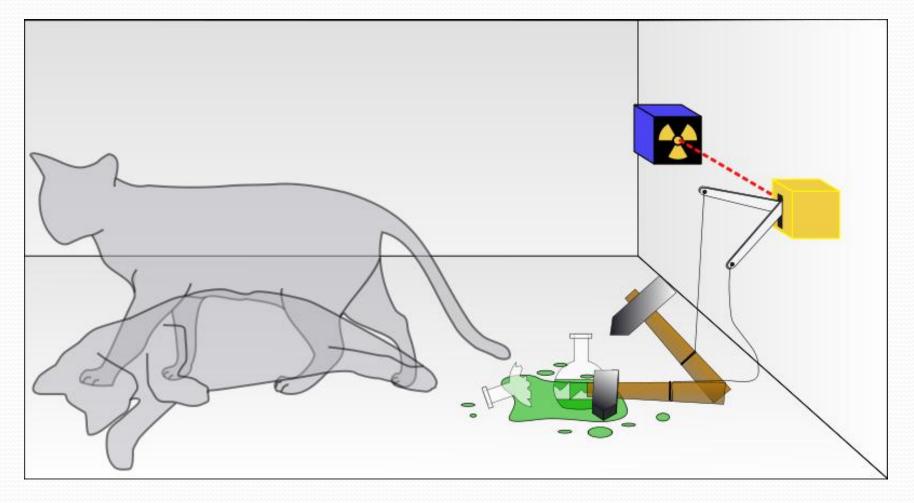
# Interpretations of Quantum Mechanics

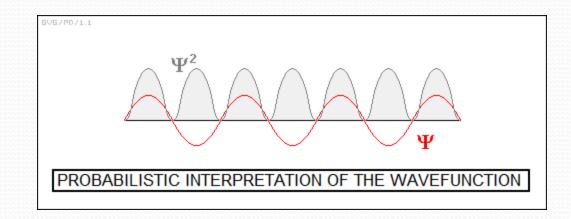
With special focus on The Many Worlds Interpretation

David Stranahan April 7, 2010


#### From Newton to Schrödinger

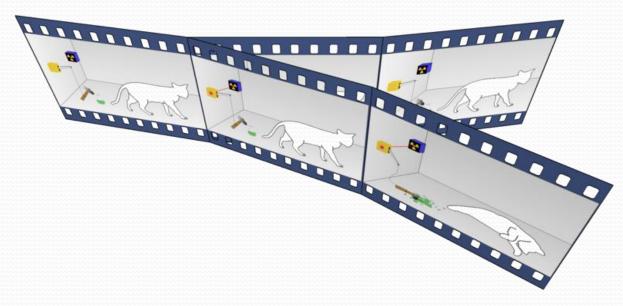
Isaac Newton – July 1687

 $\vec{F} = m\vec{a}$ 


- Erwin Schrodinger January 1926  $-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2} + U(x)\psi(x,t) = i\hbar\frac{\partial\psi(x,t)}{\partial t}$
- Max Born July 1926  $\Psi^*(x,t)\Psi(x,t)$

### Schrödinger's Cat




#### **Copenhagen Interpretation**

- Werner Heisenberg and Neils Bohr 1927
- Nature is probabilistic
- All matter exhibits wave-particle duality
- Observation induces a Wave Function Collapse



#### Many Worlds Interpretation

- Hugh Everett 1957
- Bryce DeWitt 1960
- The Wave Function is real
- No Wave Function collapse



#### References

- "Relative State" Formulation of Quantum Mechanics
  - Hugh Everett, III of Princeton University
  - Published in Reviews of Modern Physics Volume 29, Number 3 (1957)
- Assessment of Everett's "Relative State" Formulation of Quantum Theory
  - John A. Wheeler of Princeton University
  - Published in Reviews of Modern Physics Volume 29, Number 3 (1957)
- From Newton's Laws to the Wheeler-DeWitt Equation
  - John W. Norbury of University of Wisconsin Milwaukee
  - Published in European Journal of Physics Volume 19, pg 143-150 (1998)

\*\*References listed chronologically by date of first publication.

## References (cont.)

- Quantum Mechanics of Minds and Worlds
  - Jeffery A. Barrett
  - Oxford University Press (1999)
- Stanford Encyclopedia of Philosophy
  - Jan Faye and Lev Vaidman
  - Available online at: http://plato.stanford.edu/entries/qm-copenhagen/ http://plato.stanford.edu/entries/qm-manyworlds/
- The Many Worlds of Hugh Everett
  - Peter Byrne
  - Published in Scientific America (Oct 21, 2008)

\*\*References listed chronologically by date of first publication.