The Optical Frequency Comb Technique

Jason Omahen, Computer Science and Mathematics Dr. Stephen Sekula Physics 3305

Roadmap

- Motivational scenario
- What is the optical frequency comb technique?
 - Applications
- Complex waveforms: they're natural
- The Fourier Transform
- How to build a wave packet

Scenario

- To study atomic structures on the scale of femtoseconds
 - Extremely difficult with older methods
- To challenge the validity of a fundamental physical constant
 - Do one or more change *slowly* with time?
- Laser-based spectroscopy

The Technique

- Uses laser to generate light spectrum from monochromatic, ultra short pulses of light
- Results in a comb-shaped spectrum with known (calculable) wavelengths
 - Uniform and extremely short spacing of resulting spectral lines—like a ruler

The Technique (cont'd)

- Compare the wavelength of the electromagnetic radiation emitted to comb
 - Very high degree of accuracy
- Can alter the included frequencies by narrowing/broadening the pulse

Modern Applications

- Astronomical observations
- GPS
- (Re)definition of physical units: 1 m = 1/299,792,458 s
 ... and more!

John Hall

Theodore Hänsch

Nobel Prize, 2005

"for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique"

Complex Waveforms

Wave Packets

- Complex waveforms useful in quantum mechanics
 - Can approximate a well-localized particle
- Not periodic functions
- Can be created by linear combinations of sine waveforms
 - Use distinct wave numbers that are not restricted to integer multiples

The Fourier Transform

 A waveform's spectral content: know amplitude of composite wavelengths
 Allows for analysis of complex phenomena

- <u>Want</u>: A specific waveform with a dominant
 k₀
- <u>Idea</u>: Add more distinct wave numbers, k_i, near
 k₀ with small uniform separation
 - Keep doing this until the separation diminishes
- Construct A(k) to describe spectral content, or the amplitude of each wave number k_i

- Use wave function for plane wave as a building block
- Complex waveforms are linear combinations of the appropriate A(k_i) and the wave function for a plane wave

$$\psi(x) = \int_{-\infty}^{\infty} A(k) \, e^{ikx} \, dx$$

Solving for spectral content, A(k), yields the Fourier Transform of $\psi(x)$

$$A(k) = \mathcal{F}\{\psi(x)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(x) e^{-ikx} dx$$

- So what?
 - Tells us exact amplitude of each sinusoidal waveform of a corresponding wave number, k_i

Building Wave Packets

- Use inverse relationship inherent in the Fourier Transform for manipulation
- <u>Want</u>: $\psi(x)$ centered about x = 0and wavelength determined by k_0
 - Build A(k) with a dominance on k_0
 - Perform inverse FT to obtain $\psi(x)$

Building Wave Packets (cont'd)

Questions?

Sources

A bibliography of sorts

- Hall, John L. "The Optical Freqency Comb: A Remarkable Tool for Metrology, Science and Medical Diagnostics." Lecture. NanoHUB. Purdue, 9 Oct. 2008. Web. 6 Apr. 2010.
 http://nanohub.org/resources/6040.
- 2. Harris, Randy. "Mathematical Basis of the Uncertainty Principle." Modern Physics. San Francisco: Pearson/Addison Wesley, 2008. 124-32. Print.
- "The Laser Frequency Comb." CODEX. Instituto De Astrofísica De Canarias. Web. 6 Apr. 2010.
 http://www.iac.es/proyecto/codex/.
- 4. The Nobel Prize in Physics 2005. Royal Swedish Academy of Sceinces, 2005. http://nobelprize.org/nobel_prizes/physics/laureates/2005/info.pdf.
- 5. Optical Frequency Comb. Digital image. *National Resarch Council Canada*. National Resarch Council Canada. Web. 6 Apr. 2010. http://www.nrc-cnrc.gc.ca/obj/inms-ienm/images/research_images/optical_comb/COMBFIG6.gif.
- 6. "Optical Frequency Combs." *Optical Frequency Combs*. National Institute of Standards and Technology. Web. 6 Apr. 2010. http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm.
- 7. The Royal Swedish Academy of Sciences. *New Light on Modern Optics. New Light on Modern Optics*. Nobelprize.org, Oct. 2005. Web. 6 Apr. 2010.

http://nobelprize.org/nobel_prizes/physics/laureates/2005/press.html

8. Schewe, Phil, and Ben Stein. "The 2005 Nobel Prize in Physics." *Physics News Update* 748.1 (2005). *Inside Science Research - Physics News Update*. American Institute of Physics, 4 Oct. 2005. Web. 6 Apr. 2010. http://www.aip.org/pnu/2005/split/748-1.html.