Topics in Spin - Homework 1

March 11, 2014

Problem SS-1: Creating Orthonormal Basis Vectors

Consider the following set of basis vectors,

$$
|I\rangle=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right],|I I\rangle=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],|I I I\rangle=\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]
$$

Show how one goes from this set of basis vectors to the orthonormal basis vectors,

$$
|1\rangle=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],|2\rangle=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],|3\rangle=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]
$$

Problem SS-2: More on the Pauli Spin Matrices

Consider the Pauli Spin Matrices, which play a central role in spin angular momentum for a spin $-\frac{1}{2}$ system:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

1. Demonstrate that the Pauli Spin Matrices are unitary (that is, that $U U^{\dagger}=$ I, the identity matrix).
2. Demonstrate the relationships among the spin matrices,

$$
\sigma_{x} \sigma_{y}=i \sigma_{z}, \sigma_{y} \sigma_{z}=i \sigma_{x}, \sigma_{z} \sigma_{x}=i \sigma_{y}
$$

(This feature is generally known as cyclic permutation - that is, that as long as you preserve the cyclic order i, j, k of the indices (e.g. moving the symbols like they are on a cyclic conveyor belt, such that when one "falls off the end" it returns to the beginning: $i, j, k \rightarrow k, i, j \rightarrow j, k, i)$, then it is true that $\sigma_{i} \sigma_{j}=i \sigma_{k}$. The way of enforcing this using mathematical shorthand is the Levi-Civita Symbol, $\varepsilon_{i j k}$, which allows us to conveniently write $\sigma_{i} \sigma_{j}=i \varepsilon_{i j k} \sigma_{k}$. The feature of this symbol is that $\varepsilon_{i j k}=\varepsilon_{k i j}=\varepsilon_{j k i}=1$, while $\varepsilon_{i k j}=\varepsilon_{j i k}=\varepsilon_{k j i}=-1$ (that is, under the swap of any single pair of indices, the function yields -1).
3. Demonstrate the following commutation relations:

$$
\left[\sigma_{i}, \sigma_{j}\right] \equiv \sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i}=2 i \sigma_{k}
$$

4. Demonstrate that the spin matrices anti-commute, that is

$$
\left\{\sigma_{i}, \sigma_{j}\right\} \equiv \sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=0
$$

Remember these properties - they are immensely useful!

Problem SS-3: Exercise in Eigenvalues and Eigenvectors

Find the eigenvalues and eigenvectors of the following matrix:

$$
M=\left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 0 \\
0 & 1 & 4
\end{array}\right)
$$

(HINT: review how to compute the determinant of an $n \times n$ matrix - this is the key to solving eigenvalue/eigenvector problems)

