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1 Resoures

The soures for this leture series are:

• Halzen, F. and Martin, A. �Quarks and Leptons: An Introdutory Course in Modern Partile Physis�

• MMahon, D. �Quantum Mehanis Demysti�ed (a self-teahing guide)� (Hey! I am an experimental-

ist...)

• Merzbaher, E. �Quantum Mehanis (3rd Edition)�

• Sakurai, J. J. �Modern Quantum Mehanis�

• Shankar, R. �Basi Training in Mathematis: A Fitness Program for Siene Students�

• Shankar, R. �Priniples of Quantum Mehanis�

• Strang, G. �Linear Algebra and its Appliations�

• Tomonaga, S. �The Story of Spin�

• Wu Ki Tung, �Group Theory in Physis�

You should also mine the bibliography at the end of these leture notes for referenes to historial physis

publiations that were part of the long development of quantum mehanis and an understanding of spin

angular momentum.
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Figure 1: The Zeeman E�et, visible in a solar spetral line (left) that splits in the presene of a strong

magneti �eld gradient (right). Look at the bowed portion of the spetral line at the elevations where the

sunspot regon is loated. Sunspots are regions of high solar magneti �eld gradient. This photo was taken

in 1919, and is from Ref. [4℄.

2 A very brief and over-simpli�ed history of spin angular momen-

tum

The development of quantum mehanis happened in parallel with a vast array of experimental observations

regarding atoms. These observations were made in detail through the 19th entury and into the early 20th

entury. It's useful to see how the model of the atom hanged in response to experimental observations

(data).

• In 1897, Zeeman reports that atomi spetral emissions will multiply (into doubles or triples) in the

presene of a strong magneti �eld (�The Zeeman E�et�) [1, 2, 3℄. The Zeeman E�et is illustrated in

an astrophysis ontext in Fig. 1.

• The existene of atoms was �nally and �rmly established by Albert Einstein's 1905 paper regarding

Brownian Motion[5℄. This paper explained, using the atomi hypothesis (that matter is omposed of

fundamental building bloks), the observed phenomenon of Brownian Motion (the jittering of partiles

in a hot liquid), whih other ompeting hypotheses for the nature of elements and ompounds ould

not explain.

• Experiments on the eletron, perhaps the most famous being those of J. J. Thompson[6, 7℄, established

that the eletron was not a wave nor an atom, but rather an independent partile (1897). In order

to inlude the eletron into the atomi model, Thompson proposed that the atom was omposed of

a ontinuous distribution of eletrons and some positive harge elements so that their total eletri

harge was zero (neutral). This he proposed in 1904 (Fig. 2a). This exat piture of the distribution

(sometimes desribed as the �plum pudding model�) ontinued to shift absent experimental evidene

for it or against it.

• In 1911, Ernest Rutherford performed his famous sattering experiments [11℄and demonstrated that

the atom was omposed of a tightly-paked ore nuleus of positive harge. The piture was then

that the nuleus was at the enter and a loud of eletrons surrounded the nuleus, forming the atom.

The earlier �plum pudding�-style models were abandoned in favor of this piture. The new model is a

�planetary model of the atom� - the eletrons orbit a entral nuleus (Fig. 2b). This model has a �aw.

One ould alulate that single eletrons in suh orbits would radiate energy, eventually leading to the

ollapse of their orbits and the dissolving of atoms. All atoms should be unstable.
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(a) The �Plum Pudding� Model of the Atom. (b) The Rutherford Model of the atom

() The Bohr-Rutherford Model of the atom

Figure 2: Cartoon representations of various ad ho models of the atom, determined from experiments

onduted from 1897-1922. The �gures are from Refs. [8, 9, 10℄.

5



• The earlier observation (in the late 19th entury) that the energy emitted from eletri disharges of

atoms was disrete and not ontinuous implied, in the Planetary Model, that eletrons were fored

into only very spei� orbits, and ould not oupy intermediate orbits. The problem of radiation, and

these earlier observations of spetra interpreted in the Planetary Model, led to the Bohr-Rutherford

Model of the Atom in 1913[12, 13, 14, 15, 16℄ (Fig. 2). This was the next logial step beyond the

planetary model also onsistent with the data (lak of observation of general atomi instability and

disrete atomi emission spetra). Eletrons surround the nuleus, but only in well-de�ned orbits and

not anywhere in-between.

Atoms in the Bohr Model then have disrete orbits, leading to disrete energies emitted during transitions

between the orbits:

∆E = E2 − E1 = hf

where h is Plank's Constant (h = 6.626× 10−34 J · s) and f is the frequeny of the emitted light. Disrete

orbits have spei� orbital angular momentum assoiated with them, and that, too, will be disrete:

L = n~

where n is the �Priniple Quantum Number� assigning the eletron to a spei� orbital level. This notation

was introdued by Bohr.

Arnold Sommerfeld and Peter Debye independently proposed an enhanement of the Bohr Model[17℄

and were the �rst to formally propose the disretization of a omponent of total orbital angular momentum

(�spae quantization�). They proposed that orbits ould deviate from irular (as was the assumption of the

Bohr Model), strething along an axis as ellipses. This required introduing not just a priniple quantum

number, n, to desribe the orbital level, but also a new quantum number, k, to desribe the shape of the orbit
(deviation from irular). Sommerfeld proposed that k an only take positive integer values (preserving the

disretization of orbital angular momentum) but the streth of the orbit ould vary; however, the streth ould

also only vary in a disrete manner. This was desribed by a quantum number m, suh that −k ≤ m ≤ k.
Sommerfeld thus predited that orbital angular momentum should be quantized along a spei� axis, a

predition that was tested later by the Stern-Gerlah Experiment (1922) [18℄ and veri�ed (for a review of

the Stern-Gerlah Experiment, .f. Ref. [19℄). Spae quantization failed to illuminate the Zeeman E�et,

however.

The Stern-Gerlah Experiment, demonstrated spae quantization but it took time to understand exatly

the results. It wasn't until the postulation of eletron �spin angular momentum� that the spei� reasons for

the observed e�et ould be ompletely understood. This wasn't until 1927. The onept of a two-valued

internal degree of freedom present in the eletron - what we all �spin� - was thanks to Wolfgang Pauli in

1924.

The early-mid 1920s mark the end of the �old quantum mehanis,� whih e�etively was a series of ad

ho models built in response to experimental observations, and the maturation of the development of formal

quantum mehanis based on various priniples, inluding energy onservation and the observed wave nature

of matter and light. Formal quantum mehanis allowed for an exat mathematial model of the atom to be

built, and that model reprodued exatly many of the earlier observed atomi phenomena while prediting

new ones. Speial relativity was inorporated into formal quantum mehanis by Paul Dira in 1928 (.f.

[20℄).

In these letures, I will walk a narrow path through the subjet of spin. We will roughly follow this

trajetory:

• A review of the most salient and basi mathematial tools needed to make progress

• The appliation of the tools to orbital angular momentum as a preparation and refresher on the subjet

• The introdution, by hand, of spin angular momentum into non-relativisti quantum mehanis

• The handling of simple multi-partile systems and the addition of individual angular momentum states

to obtain a single, total angular momentum state
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• Spin in relativisti quantum mehanis

• Spin and the identi�ation of new partiles, with a fous on the Higgs Boson and the theoretial and

experimental realities of measuring its spin quantum number

3 Basi Mathematial Tools

3.1 Basi Information About Complex Numbers

Consider a omplex number, z, whih an be written as the sum of real and imaginary parts:

z = R(z) + i I(z) = x+ iy.

The omplex onjugate of this number an be written as:

z∗ = x− iy

A few interesting relationships an be immediately derived:

R(z) =
z + z∗

2

I(z) =
z − z∗

2i
.

Using this, we an also write the magnitude of the omplex number (whih must be a real number):

|z|2 ≡ zz∗

= R(z)2 + I(z)2

≥ I(z)2 =

(

z − z∗

2i

)2

.

3.2 Vetors, Vetor Spaes, and the Dira Notation

3.2.1 Cruth: vetors in spae and time

When we learn vetors, we learn about spae and then spae-time vetors:

~x = (x, y, z)

X = (x, y, z, ct) = (~x, ct).

3.2.2 Generalization: vetors in the Dira Notation

However, vetors are not restrited to only being olumns or rows of numbers. They an be olletions of

any type of mathematial objet - funtions, matries, et. In order to generalize the onept of a vetor,

we introdue the Dira Notation. A olumn-vetor is referred to as a ket, and is denoted:

|x〉 =





x
y
z





while a row-vetor is referred to as a bra (bra-ket . . . get it? I know. Terrible. It annoyed me when I �rst

learned this notation.) and is denoted:

〈x| =
[

x y z
]

.
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I have above used real numbers in the onstrution of a vetor; however, we should not limit ourselves to

real numbers, but generalize to omplex numbers. A set of vetors is said to be onstruted over the ��eld of

real numbers� if all elements of the vetors in the set are real-valued; likewise, a set is onstruted over the

��eld of imaginary� or the ��eld of omplex� numbers if elements of the vetors in the set are onstruted

from imaginary or omplex numbers, respetively.

It is important to note that the most general form of the row-vetor is:

〈x| =
[

x∗ y∗ z∗
]

=





x∗

y∗

z∗





T

= (|x〉)∗T .

That is, the bra is simply the transpose of the omplex-onjugate of the ket.

3.2.3 Vetor Spaes

A Vetor Spae,V, is de�ned aording to these properties:

• There is a de�nite rule for forming the sum of two vetors, denoted |V 〉+ |W 〉.

• There is a de�nite rule for multipliation by salars a,b,... denoted a |V 〉with the following features:

� The result of these operations (addition, and multipliation by salars) results in another vetor

in the same spae, a feature alled �losure�: |V 〉+ |W 〉 ∈ V.

� Salar multipliation is distributive: (a+ b) |V 〉 = a |V 〉+ b |V 〉.
� Salar multipliation is assoiative: a (b |V 〉) = (ab) |V 〉
� Addition is ommutative (independent of the order of addition): |V 〉+ |W 〉 = |W 〉+ |V 〉.
� Addition is assoiative: (|V 〉+ |W 〉) + |Z〉 = |V 〉+ (|W 〉+ |Z〉).
� There exists a null vetor obeying: |V 〉+ |0〉 = |V 〉.
� For every vetor there exists an inverse under addition, suh that: |V 〉+ |−V 〉 = |0〉.

The salars involved above are alled the �eld over whih the vetor spae is de�ned, as mentioned earlier.

As Shankar says in his text on quantum mehanis, it's fairly easy to remember all of these rules... �do what

omes naturally.�

We will deal only with linear vetor spaes - that is, those where any vetor in the spae an be written

as a simple linear sum of other vetors in the spae:

|W 〉 =
n
∑

i=1

ai |Vi〉 .

3.2.4 Linear Independene and Basis Vetors

Here, we an de�ne an important feature of some subset of vetors in the spae. Consider this sum:

n
∑

i=1

ai |Vi〉 = |0〉

A set of vetors, |Vi〉, is said to be linearly independent if and only if the above sum is ahieved by setting

all ai = 0. That is, the set is linearly indepenent if there is no ombination of multipliative salars that

leads to a null sum, other than when the salars are themselves null.

A set of linearly independent vetors whose sum an be used to obtain any other vetor in the spae is

referred to as the basis of the vetor spae.
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3.2.5 The (Inner) Salar Produt

Consider a vetor |ψ〉. The salar produt is that produt whih returns a number in the �eld on whih the

vetor spae is de�ned. When the salar produt is omputed between a vetor and itself, we refer to this

as the �magnitude� of the vetor.

The general salar produt is alled the �inner produt� and is denoted simply:

〈W |V 〉 ∈ R

The magnitude (length) of a vetor is then given by:

|V |2 = 〈V |V 〉
|V | =

√

〈V |V 〉.

We demand that this produt obey the following axioms:

• Skew-symmetry: 〈V |W 〉 = 〈W |V 〉∗

• Positive semide�niteness: 〈V |V 〉 ≥ 0 and is exatly 0 i� |V 〉 = |0〉.

• Linearity in ket: 〈V | (a |W 〉+ b |Z〉) = 〈V |(aW + bZ〉 = a〈V |W 〉+ b〈V |Z〉.

Suh a vetor spae with this produt de�ned is alled an inner produt spae.

• Two vetors are orthogonal if their inner produt vanishes

• |V | is referred to as the �norm� or �length� of the vetor, |V 〉.

• A set of basis vetors all of unit norm is referred to as an �orthonormal basis.�

3.2.6 Expansion of vetors in an orthonormal basis

If we have identi�ed a set of orthonormal basis vetors, |i〉, any vetor in the spae an be written as:

|V 〉 =
n
∑

i=1

vi |i〉 .

To �nd the jth omponent of this vetor, we ompute:

〈j|V 〉 =

n
∑

i=1

vi〈j|i〉

=

n
∑

i=1

viδij

where δij is the Kroneker Delta whih satis�es δii = 1 and δij = 0 for i 6= j. This merely yields:

〈j|V 〉 = vj .

Using this result, we an write the vetor as an expansion in the basis vetors as follows:

|V 〉 =
n
∑

i=1

|i〉 〈i|V 〉.

In other words, a general vetor may be written as the sum of basis vetors, where eah basis vetor is unit

length and multiplied by a oe�ient given by 〈i|V 〉.
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3.2.7 Finding an Orthonormal Basis - the Gram-Shmidt Theorem

We are often interested in �nding the orthonormal basis vetors of a vetor spae. This an be done using

the Gram-Shmidt proedure. Given a set of vetors that de�ne a basis set (they must only be non-parallel),

we an obtain an orthonormal basis set as follows:

1. Take one of the vetors, and merely resale it by its own length so it beomes a unit vetor. This yields

the �rst normal basis vetor.

2. Subtrat from the seond vetor its projetion along the �rst, leaving behind only the part perpendiular

to the �rst. Resale this piee by its own length, yielding a seond normal vetor orthogonal to the

�rst.

3. Repeat this proedure; for eah additional vetor in the original basis, subtrat from it the projetions

of its length along the other orthonormal vetors, and resale the result by its length.

Writing out the steps in Dira Notation:

1. The �rst unit-length vetor, |1〉, is obtained from one of your basis vetors, |I〉, as follows:

|1〉 = |I〉
√

〈I|I〉
.

2. The seond unit-length vetor, is obtained by �rst doing this:

|2′〉 = |II〉 − |1〉 〈1|II〉

and then �nally by:

|2〉 = |2′〉
√

〈2′|2′〉
.

3. The third is obtained via:

|3′〉 = |III〉 − |1〉 〈1|III〉 − |2〉 〈2|III〉

followed by

|3〉 = |3′〉
√

〈3′|3′〉
.

4. Rinse and repeat...

3.2.8 The Shwartz Inequality

This mathematial statement - the Shwartz Inequality - is essential in formulating a generi version of the

Heisenberg Unertainty Priniple. It states that:

|〈V |W 〉| ≤ |V ||W |.

You an go and prove it, if you like; what you have learned from the earlier parts of the leture should allow

you to demonstrate this. (HINT: you need to employ the axiom of positive semi-de�niteness, 〈Z|Z〉 ≥ 0.)
When two vetors are orthogonal, their inner produt vanishes and this inequality is maximally true (0

is the smallest, positive, real number you an obtain from this produt!). When two vetors are exatly

parallel, then this is an exat equality. Non-parallel, non-orthogonal vetors lie in between.

10



✬

✫

✩

✪

In-Class Exerise: Pratie with Vetors in a Matrix Representation

Consider the following vetors in a matrix representation:

|I〉 =
[

1
5

]

, |II〉 =
[

7
0

]

1. Compute the omplex-onjugate transposes of these vetors (the bras that orrespond to these kets).

This is referred to as the adjoint of the vetor.

2. Calulate the length of eah of these vetors.

3. Demonstrate that these vetors are non-parallel.

4. Using the Gram-Shmidt Theorem, reate from these vetors an orthonormal basis vetor set.

3.3 Linear Operators

An operator is any mathematial objet that ats on a vetor in the spae, V, and returns another vetor in

the spae:

A |V 〉 = |W 〉

or

〈W |A = |Z〉

In the matrix representation, this would be represented by n× n matries if the kets (bras) are represented

by n× 1 olumn matries (1× n row matries).

We are onerned with linear operators that obey these rules:

Aα |V 〉 = αA |V 〉
A (α |V 〉+ β |W 〉) = αA |V 〉+ βA |W 〉

〈V |αA = 〈V |Aα
(〈V |α+ 〈W |β)A = α 〈V |A+ β 〈W |A

The simplest operator is the identity operator, whih leaves the vetor alone:

I |V 〉 = |V 〉 .

It satis�es this behavior for all kets and all bras.

3.3.1 Properties of Linear Operators

An operator, A, has an inverse, A−1
, if the following equation is satis�ed:

AA−1 = I.

In general, the inverse is found by:

A−1 =
AT

C

det(A)

where AT
C is the o-fator matrix and det(A) is the determinant. It is good to here onsult a devoted

textbook on linear algebra.

A matrix is Unitary if

A∗TA ≡ A†A = I.
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The operation of the onjugate transpose (A∗T
) is known as determining the adjoint matrix, A†

. In this very

spei� ase, the inverse of the operator is its adjoint.

A matrix is Hermitian if it is its own self-adjoint; that is, if A = A†
. As a result of this, the diagonal

elements of a Hermitian matrix MUST be real numbers and thus det(A) is a real number.
A matrix, A, is positive-de�nite if

R(〈x|A |x〉) > 0 for all |x〉 , xi ∈ C

(the real part of omplex number that results from determining the projetion of A |x〉 on the original |x〉 is
positive, for all vetors formed on the �eld of omplex numbers, xi). For a Hermitian Matrix, the neessary

(but not su�ient) onditions for being positive-de�nite are:

• aii > 0 for all i

• aii + ajj > 2|R[aij ]| for i 6= j

• The element with the largest modulus must lie on the main diagonal

• det(A) > 0

3.3.2 Matrix Elements of Linear Operators

The ation of a linear operator an be fully spei�ed by its ations on the basis vetors of a vetor spae:

A |i〉 = |i′〉 .

We an then write the ation of the operator on any vetor in the spae:

A |V 〉 = A

n
∑

i=1

vi |i〉 =
n
∑

i=1

viA |i〉 =
n
∑

i=1

vi |i′〉 .

If we then take the inner produt of this formula with another basis vetor, |j〉,

〈j|i′〉 = 〈j|A |i〉 ≡ Aij

and we say that this is the i,j element of the operator in the matrix representation (the �matrix elements�).

The omponents of a vetor |V ′〉 an then be expressed:

v′i = 〈i|V ′〉 = 〈i|A|V 〉 = 〈i|A





n
∑

j=1

vj |j〉





=

n
∑

j=1

vj〈i|A|j〉

=

n
∑

j=1

Aijvj .

We an then imagine shematially how to determine the matrix elements of the operator from the basis

vetors:

















v′1
v′2
.
.
.
v′n

















=

















〈1|A|1〉 〈1|A|2〉 . . . 〈1|A|n〉
〈2|A|1〉

.

.

.
〈n|A|1〉 〈n|A|n〉

































v1
v2
.
.
.
vn

















.
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Figure 3: A 3-D Cartesian Coordinate system. This will help you to visualize rotations of the axes about

the x-axis. From Ref. [21℄.

✬

✫

✩

✪

In-Class Exerise: The Rotation Operator, R

Consider an operator that exeutes rotations by 90◦(π/2 radians) around the unit vetor,

~i, in a Cartesian

Coordinate System (Fig. 3) where the x-diretion is denoted by

~i, the y-diretion by

~j, and the z-diretion

by

~k. The ations of the rotation operator are given as follows on the orthonormal basis vetors:

R(
1

2
π~i) |i〉 = |i〉

R(
1

2
π~i) |j〉 = |k〉

R(
1

2
π~i) |k〉 = − |j〉

Determine the matrix elements of this rotation operator.

3.3.3 Rotation and Commutation

The onept of a rotation operator, one that hanges basis vetors into one another, is introdued in the

in-lass exerise above. In general, we are interested in understanding whether or not operators ommute

with one another - that is, whether or not the result of two operators ating on a basis vetor depends on

the order in whih they are applied.

Consider the above rotation operator, and its equivalent for rotations about the y-axis:

R(
1

2
π~j) |i〉 = − |k〉

R(
1

2
π~j) |j〉 = |j〉

iR(
1

2
π~j) |k〉 = |i〉

Perform �rst a rotation of the y-axis around the x-axis, then rotate the result around the y-axis:

R(
1

2
π~j)R(

1

2
π~i) |j〉 = R(

1

2
π~j) |k〉

13



= |i〉 .

Compare that to �rst rotating the y-axis around the y-axis, then rotating the result around the x-axis:

R(
1

2
π~i)R(

1

2
π~j) |j〉 = R(

1

2
π~i) |j〉

= |k〉 .

We see that we DO NOT GET THE SAME RESULT. The result is dependent on the order of operator

appliation to the original state. This then let's us say that:

R(
1

2
π~i)R(

1

2
π~j) 6= R(

1

2
π~j)R(

1

2
π~i)

or, similarly, that

R(
1

2
π~i)R(

1

2
π~j)−R(

1

2
π~j)R(

1

2
π~i) 6= 0

whih is to say that these operators do not ommute with one another. The ommutation relation is written

as:

[R(
1

2
π~i), R(

1

2
π~j)] ≡ R(

1

2
π~i)R(

1

2
π~j)−R(

1

2
π~j)R(

1

2
π~i) 6= 0.

3.3.4 Eigenvalues and Eigenvetors

In general, an operator's ation on a vetor is some very omplex return of rotation and other e�ets.

However, there are a few privileged vetors that, when ated upon by an operator, are merely saled by a

number. These are alled eigenvetors and the saling fators are alled eigenvetors.

The importane of this partiular behavior annot be understated, though it seems like a very simple

thing at �rst. In equation form:

A |V 〉 = a |V 〉 .

We an write this in a suggestive equation form:

(A− aI) |V 〉 = |0〉

and then we see that the eigenvetors are given by:

|V 〉 = (A− aI)−1 |0〉 .

There is a trivial solution . . . |V 〉 = |0〉. We're not interested in that. We are interested instead in the

other ase - where we onsider the properties of (A− aI)−1
. The only way for a general matrix of this form

to satisfy the above equation is if the determinant of the matrix vanishes, sine:

(A− aI)−1 =
(A− aI)TC
det(A− aI)

where C refers to the �o-fator matrix� of the original matrix. Consult a textbook on linear algebra for a

deeper disussion of this. We only need one feature from the above equation: the only way for the eigenvetor

equation to be satis�ed is if the determinant vanishes, sine the ofator matrix will be �nite if the original

matrix is �nite. So we know that the eigenvetor equation imposes:

det(A− aI) = 0.

14



The trik is �nding these vetors. For instane, onsider the two-dimensional rotation matrix that rotates

x→ y and y → −x:
R2 =

(

0 1
−1 0

)

.

The eigenvalue equation is:

(R2 −mI) |V 〉 = |0〉

From this, we know that:

det(R2 −mI) = 0

det

(

0−m 1
−1 0−m

)

= 0

(0−m)2 + 12 = 0

m2 + 1 = 0

m = ±i.

We now have the eigenvalues. To �nd the eigenvetors:

R2 |V 〉 = +i |V 〉
R2 |W 〉 = −i |W 〉

Considering the �rst equation:

R2 |V 〉 =

(

0 1
−1 0

)(

v1
v2

)

= +i

(

v1
v2

)

v2
−iv1 =

iv1
iv2

We get a set of equations from whih we an solve for the omponents - but many possible numbers will

work here. What do we hoose? Well, we also learn from the eigenvalue equation the following useful tidbit:

bA |V 〉 = ba |V 〉 = a(b |V 〉) = a(A |V 〉)

and any vetor that is an eigenvetor, when saled, is ALSO an eigenvetor. We an pik any vetor we like

that satis�es the above onstraint equation, so let's hoose a unit vetor:

|V 〉 = 1√
2

(

1
i

)

.

The seond eigenvetor is then given by:

R2 |W 〉 = −i |W 〉
(

0 1
−1 0

)(

w1

w2

)

= −i
(

w1

w2

)

w2

−w1
=

−iw1

−iw2

We an then write down a unit vetor that satis�es these onstraints:

|W 〉 = 1√
2

(

1
−i

)

.
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3.3.5 The Diagonal Form of a Matrix

The eigenvalue equation immediately let's us reognize the solution to a spei� problem - what is the

matrix, S, that transforms A suh that the resulting matrix is entirely diagonal (only elements on the main

diagonal)? This is represented by the equation:

S−1AS = Λ

This is satis�ed by onstruting the matrix S from the eigenvetors, where eah olumn is an eigenvetor of

A. If that is done, then we see that:

AS = A
(

|V1〉 . . . |Vn〉
)

=
(

a1 |V1〉 . . . an |Vn〉
)

=
(

|V1〉 . . . |Vn〉
)













a1
.
.
.
an













= SΛ

and therefore:

S−1(AS) = S−1(SΛ) = Λ

Let us onsider two operators, A and B, whih are both diagonalizable. If they ommute, they will

share a ommon set of eigenvetors that represent a linearly independent basis in the vetor spae. This is a

powerful result. Should two operators be identi�ed that have eigenvetors and ommute, we know that they

possess a ommon set of eigenvetors that simultaneously diagonalize both operators.

To see this, let us onsider:

AB = BA

so that

[A,B] = 0.

Let us assume that A and B have a matrix, S, that simultaneously diagnolizes both. Keeping in mind that

diagonal matries, even de�ned over the �eld of omplex numbers, always ommute:

AB = SΛ1S
−1SΛ2S

−1 = SΛ1Λ2S
−1

BA = SΛ2S
−1SΛ1S

−1 = SΛ2Λ1S
−1

Sine diagonal matries always ommute, we see that Λ2Λ1 = Λ1Λ2 and thus AB = BA.
It is matries that DON'T ommute that su�er from Heisenberg's Unertainty Priniple, as we will see

in the lose of this setion.

3.3.6 The Expetation Value and the Variane

The expetation value of an operator, A, applied to a vetor, |V 〉, is a number that represents the most likely
value one would obtain by measuring the quantity represented by the operator. It is written as:

〈A〉 = 〈V |A |V 〉 .

For a Hermitian operator, this is a real-valued number. Sine it's a number, when it appears in a alulation

it an be moved anywhere in the alulation at no penalty (e.g. it doesn't have to be moved arefully, like a

matrix).
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The variane is the average of the typial variations of the measured values (obtained by applying A to

the vetor) from the mean (the expetation value). It is de�ned as:

(∆A)2 = 〈V |(A− 〈A〉)†(A− 〈A〉)|V 〉
= 〈V | (A− 〈A〉)2 |V 〉
= 〈(A − 〈A〉)2〉.

It is often onvenient to de�ne:

|X〉 = (A− 〈A〉) |V 〉

so that

(∆A)
2
= 〈X |X〉

Then we an similarly say:

(∆B)2 = 〈Y |Y 〉

and

〈(B − 〈B〉)†(A− 〈A〉)〉 = 〈Y |X〉.
We almost immediately an ombine things we've learned above (the Shwartz Inequality) and ome to an

interesting formula, whih we will use later:

(∆A)
2
(∆B)

2
= 〈X |X〉〈Y |Y 〉 (1)

= |X |2|Y |2 (2)

≥ |〈X |Y 〉|2. (3)

It is onvenient to rewrite this inequality in a more suggestive form, starting from:

|〈X |Y 〉|2 = zz∗ ≥
( 〈X |Y 〉 − 〈Y |X〉

2i

)2

≥
( 〈(A− 〈A〉)(B − 〈B〉)〉 − 〈(B − 〈B〉)(A − 〈A〉)〉

2i

)2

=

( 〈AB〉 − 〈A〉〈B〉 − 〈B〉〈A〉 − 〈A〉〈B〉 − 〈BA〉+A〈B〉+B〈A〉 − 〈A〉〈B〉
2i

)2

=

( 〈AB〉 − 〈BA〉
2i

)2

=

( 〈[A,B]〉
2i

)2

This �nally lets us write:

√

(∆A)
2
(∆B)

2
= ∆A∆B ≥ 〈[A,B]〉

2i
.

There are far better ways to generalize this, but it will serve our purposes for this leture.

3.4 A omment on funtion spaes

The onept of a vetor spae is not limited only to mathematial objets in a matrix representation.

Funtions of a ontinuous variable, like f(x), an ALSO be part of a spae with addition, salar multipliation,

et. This kind of spae is a Hilbert Spae. There are relationships between the matrix representation and

the funtion representation of a spae; the Dira Notation aommodates both of them.
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• In the matrix representation, a ket is a olumn matrix; in a Hilbert Spae, a ket is a funtion, like

f(x).

• In the matrix representation, an operator is a square matrix; in a Hilbert Spae, an operator is a

funtion that modi�es f(x) and returns another funtion in the Hilbert Spae, g(x) .

• In the matrix representation, the inner produt is a matrix multipliation that results in a real number;

in a Hilbert Spae, the inner produt is an in�nite sum over the produts of two funtions, f∗(x)g(x),
multiplied by a sale fator ∆ (related to the step size of the sum), in the limit that ∆ → 0. Thus:

〈f |g〉 =
ˆ ∞

−∞
f∗(x)g(x) dx.

• In the matrix representation, the expetation value is a matrix multipliation of a row vetor, a square

matrix, and a olumn vetor, yielding a real number. In a Hilbert Spae:

〈f |A|g〉 =
ˆ ∞

−∞
f∗(x)Ag(x) dx.

Either of these approahes is part of a strategy to utilizing the Shroedinger Wave Equation, and they will

often be mixed as we move forward.
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4 The Shroedinger Wave Equation (Non-Relativisti QuantumMe-

hanis)

It is impossible, in the ontext of this leture series, to review in depth the Shroedinger Wave Equation. You

are expeted to have already seen this at least one in an undergraduate ourse. The fundamental equation

of quantum mehanis is a re-statement of energy onservation using the Hamiltonian Formalism. That is,

aording to this formalism:

H = T + V = E

where H , the �Hamiltonian� of the system whih ompletely desribes energy in the system, is the sum of

kineti energy, T , and potential energy, V . This should be equal to the total energy of the system.

Consider a single-partile system. In lassial mehanis, the kineti energy of a partile an be written:

T =
p2

2m
.

(I leave it as an exerise to the student to demonstrate this, starting from the earliest form we learn,

T = KE = 1
2mv

2
). In quantum mehanis, momentum, P , is an operator whose ation on the wave funtion

of the single-partile system is to measure the momentum of the system, e.g.:

P |ψ(x, y, z)〉 = p |ψ(x, y, z)〉 .

In terms of linear algebra/matrix mehanis, we reognize this statement as an eigenvalue equation. We an

write the operator, P , as a funtion in a Hilbert Spae - a vetor spae for funtions. The funtional form

of the momentum operator is

P = −i~
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

and so we arrive at the operator form of the Shroedinger Wave Equation:

H |ψ〉 = E |ψ〉
(T + V ) |ψ〉 = E |ψ〉

(

1

2m
P 2 + V

)

|ψ〉 = E |ψ〉
(

− ~
2

2m

(

∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)

+ V

)

|ψ〉 = E |ψ〉

The devil is in the details, of ourse. Usually, one you learn this, you then make your penil bleed by having

to solve for the energy eigenvalues given a potential (e.g. the harmoni osillator potential, a square well,

et.) and a wave funtion. We will not do this, but instead skip on into orbital angular momentum (e.g.

onsider system like a single eletron trapped in the eletri potential of a entral nuleus, whih an exeute

orbital motion in the presene of that potential).✬

✫

✩

✪

In-Class Exerise: The Momentum of a Plane Wave

Consider a plane wave, whose wave funtion is given by:

|ψ(x, y, z, t)〉 = Ae−i~(kx−ωt).

What is the momentum of this plane wave?
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5 Review of Angular Momentum

In lassial physis, angular momentum is de�ned as the ross-produt of the lever arm diretion, ~r, at a
point (with respet to the enter of rotational motion) with the linear momentum, ~p, at that same point:

~L = ~r × ~p.

We know the form of the momentum:

P |ψ(x, y, z)〉 = −i~
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

|ψ(x, y, z)〉 .

There are relationships between the omponents of the angular momentum. If we write out the ross-

produts that yield eah omponent:

Lx = rypz − rzpy

Ly = rzpx − rzpz

Lz = rxpy − rypx

we an then ask and answer questions like:

• Does the angular momentum operator ommute with the Hamiltonian? What does this imply?

• Sine, in quantum mehanis, momentum is an operator and not simply a number, do the omponents

of angular momentum ommute with one another? That is, an we say that LxLy = LyLx and the

result of any measurement of the x-omponent of angular momentum, then the y-omponent of angular

momentum, is the same if we measure �rst y and then x? If not, what does this imply?✬

✫

✩

✪

In-Class Exerise: Commutation Relations of the Angular Momentum Operators

Demonstrate that the ommutation relations of the omponents of the angular momentum operators are, in

fat:

[Li, Lj ] = i~Lk.

In other words, show that the omponents DO NOT ommute and the order of operation (measure x, then

y) a�ets the outome of the measurement. From this, we an derive the following useful relationship, whih

we take as given for the remainder of this leture series:

~L× ~L = i~~L.

5.1 The Commutation of the Hamiltonian and the Angular Momentum Oper-

ator

It an be shown that, if the potential part of the Hamiltonian onsists of a spherially symmetri potential,

then the Hamiltonian ommutes with the Angular Momentum Operator; that is,

[L2, H ] = 0.

and also that

[Li, H ] = 0

What does this imply?
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As disussed earlier in the �Basi Mathematis� setion, ommutation of two operators implies that they

eah possess a ommon set of eigenvetors that simultaneously diagonalize both operators (yielding ommon

eigenvalues). We an desribe these solutions using by eigenvetors (wave funtions) of the form |ψ(E,α)〉,
where E and α here denote the eigenvalues of H and L2

, respetively.

5.2 The Non-Commutation of Angular Momentum Components and Informa-

tion

The fat that we annot, in quantum mehanis, ommute all of the individual omponents of angular

momentum has onsequenes.

• We an only speify with ertainty one of the three omponents at any one time. It is onventional to

hoose Lz.

• This is, in a deep sense, diretly related to the Heisenberg Unertainty Priniple. Having exatly

spei�ed Lz, we an ask if there is an inequality relationship between the remaining two omponents

of the angular momentum, ala

∆Lx∆Ly ≥ 〈[Lx, Ly]〉
2i

.

(in other words, is the right-hand side non-zero, so that this is more than a trivial inequality?). To

answer this, we grind through the alulation:

〈[Lx, Ly]〉 = 〈ψ|LxLy − LyLx|ψ〉
= 〈ψ|(i~Lz)|ψ〉
= i~〈ψ|Lz|ψ〉
= i~〈Lz〉.

So we arrive at the statement of the Heisenberg Unertainty Priniple for angular momentum:

∆Lx∆Ly ≥ ~

2
〈Lz〉 ≥

~

2
.

We onlude from this that if one spei�es the angular momentum along the z-diretion, one has

NO ontrol in speifying the angular momentum along both the x- and y-omponents with absolute

preision.

5.3 The Eigenvalues of L
z

We an write the Lzoperator in the spae of artesian oordinates (x,y,z) as:

Lz = −i~
(

x
∂

∂y
− y

∂

∂x

)

.

It is more onvenient, however, to express this in spherial oordinates - espeially beause in quantum

mehanis we are often interested in spherially symmetri potentials, and these problems simplify in spherial

oordinates.✓
✒

✏
✑

In-Class Exerise: Transformation of Coordinate System

Transform the Cartesian-spae form of Lz to the spherial-oordinate form. That is, express

Lz not in (x,y,z) but in (ρ,θ,φ).

The orret expression in spherial oordinates is quite simple:

Lz = −i~ ∂

∂φ
.
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Figure 4: The relationship between Cartesian oordinates and spherial oordinates. Figure is from Ref.

[22℄.

We an now setup and solve the eigenvalue problem, using the funtional form of the operator:

Lz |ψ(ρ, φ)〉 = lz |ψ(ρ, φ)〉 −→ −i~ ∂

∂φ
ψ(ρ, φ) = lzψ(ρ, φ).

This is a �rst-order di�erential equation, and by inspetion (that is, with some experiene in solving these

under your belt!), you an simply write the solution as:

ψ(ρ, φ) = R(ρ)eilzφ/~.

At �rst glane, it appears that lz an be any omplex number. We must impose the Hermitiity requirement

on the problem in order to ome to a omplete understanding of the eigenvalues:

〈ψ1|Lz |ψ2〉 = 〈ψ2|Lz |ψ1〉∗ .

If we write this in the oordinate basis:

ˆ ∞

0

ˆ 2π

0

ψ∗
1

(

−i~ ∂

∂φ

)

ψ2 ρ dρ dφ =

[
ˆ ∞

0

ˆ 2π

0

ψ∗
2

(

−i~ ∂

∂φ

)

ψ1 ρ dρ dφ

]∗

. (4)

To solve this, integration by parts is required:

ˆ b

a

u dv = uv|ba −
ˆ b

a

v du

where in our ase we identify:

u = ψ∗
2

dv = −i~ ∂

∂φ
ψ1dφ = −i~dψ1

du = dψ∗
2 =

∂

∂φ
ψ∗
2dφ

v = −i~ψ1
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We an then write the right-hand side of the original equality as:

[
ˆ ∞

0

ˆ 2π

0

ψ2

(

−i~ ∂

∂φ

)

ψ1 ρ dρ dφ

]∗

=

[
ˆ ∞

0

ρ dρ (−i~ψ∗
2ψ1)|2π0 −

ˆ ∞

0

ˆ 2π

0

ρ dρ

(

−i~ψ1
∂

∂φ
ψ∗
2dφ

)]∗

=

ˆ ∞

0

ρ dρ (−i~ψ2ψ
∗
1)|2π0 + L.H.S.

where �L.H.S.� is the left-hand side of Equation 4. The original L.H.S. and this term anel eah other,

leaving:

ˆ ∞

0

ρ dρ (−i~ψ2ψ
∗
1)|

2π
0 = 0

We an simply then write a relationship between the two integrands, sine every other part of the integral

is idential, that satis�es this above requirement:

ψ2(ρ, 2π)ψ
∗
1(ρ, 2π)− ψ2(ρ, 0)ψ

∗
1(ρ, 0) = 0.

The only way to satisfy this equation is if ψ(ρ, 2π) = ψ(ρ, 0). This imposes a boundary ondition on the

angular part of the wave funtion:

1 = e2πilz/~.

We thus �nd that

1. lz must be a real number

2. lz an only take integer values if it is to satisfy this equation

Thus:

lz = m~, m = 0,±1,±2, ...

and we learn that the z-omponent of angular momentum is predited to be a quantized quantity. We an

label m to be the magneti quantum number, the true quantum number of the state desribing the projetion

of orbital angular momentum along the z-diretion.

5.4 The Eigenvalues of L2

It an be shown that there is another operator, independent of Lz, that not only also ommutes with the

Hamiltonian (for azimuthally symmetri wave funtions) but also with Lz itself. That operator is the square

of the total angular momentum vetor, L2 = L2
x+L

2
y+L

2
z. One we speify the eigenvalues of this operator,

we an ompletely speify the angular momentum state of a system.

What are the eigenvalues of this operator? We an begin by writing:

L2 |ψ(α,m)〉 = α |ψ(α,m)〉

wherem are the eigenvalues of the Lz operator and α are the eigenvalues of the L2
operator. I am intentionally

being a bit areful about not assuming that the eigenvalues are just ℓ2 on the right-hand side of this equation;
as we will see, applying the momentum operator twie in suession doesn't merely yield the square of a

single number.

For the next step, it will be onvenient to rewrite Lx and Ly in terms of two other operators,

L+ ≡ Lx + iLy

L− ≡ Lx − iLy
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and then ask the question: what are the ommutation relations of these operators with Lz? To answer this:

[Lz, L+] = [Lz, Lx] + i[Lz, Ly]

= i~Ly + i (−i~Lx)

= ~ (Lx + iLy) = ~L+

Likewise,

[Lz, L−] = [Lz, Lx]− i[Lz, Ly]

= i~Ly − i (−i~Lx)

= −~ (Lx − iLy) = −~L−

We an then onsider what it means to have these new operators, L+ and L−, at on a de�nite state of

|ψ(m)〉. Spei�ally, we an ask, �What will Lz measure after L± ats on a de�nite state of |α, β〉?� Let's

give this a try:

Lz (L+ |ψ(m)〉) = ([Lz, L+] + L+Lz) |α, β〉
= (~L+ + L+Lz) |α, β〉
= ~L+ |α, β〉+ L+β |α, β〉
= (β + ~) (L+ |α, β〉)

From this, we onlude that:

Lz (L+ |α, β〉) = Lz |α, β + ~〉

That is, the at of applying L+to a state of de�nite m, |α, β〉, and then measuring the z-projetion of its total
angular momentum is EQUIVALENT to having just applied the Lz operator to a state |α, β + ~〉. We an

then see that L+ is the �Raising Operator� of angular momentum projetion along the z-axis. Similarly, an

equivalent exerise reveals that L− is the Lowering Operator of angular momentum, delining the projetion

along the z-axis by one unit. For a �xed amount of total orbital angular momentum, it is possible to move

m through all its possible values up to a maximum value and down to a minimum value. If the maximum

value is βmax, the minimum value must be −βmax and the distane between the minimum and maximum

values of m is given by 2βmax. There is a VCR joke in here someplae, but I'm probably the only one old

enough to get it.

We an also determine the ommutation relation between the raising and the lowering operator:

[L+, L−] = L+L− − L−L+

= (L2
x − iLxLy + iLyLx + L2

y)− (L2
x + iLxLy − iLyLx + L2

y)

= −2iLxLy + 2iLyLx

= −2i(LxLy − LyLx)

= −2i(i~Lz)

[L+, L−] = 2~Lz

You an also demonstrate that [L2, L+] = 0 and [L2, L−] = 0. From this, you an see that:

L2L+ |α, β〉 = L+L
2 |α, β〉 = αL+ |α, β〉 .

We should now ponder the two equations involving raising/lowering operators and L2
and Lz,

L2L± |α, β〉 = αL± |α, β〉
LzL± |α, β〉 = (β + ~)L± |α, β〉 .
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We see that if we were to ask, what happens when

L+ |α, β〉

we would be able to onlude that L+ |α, β〉 ∝ |α, β + 1〉, or more mathematially:

L+ |α, β〉 = C(α, β)+ |α, β + 1〉
L− |α, β〉 = C(α, β)− |α, β − 1〉

To solve the original problem in whih we were interested - the eigenvalues of L2
- it is onvenient to

write:

L2 = L2
z +L2

x + L2
y

= L2
z +

1

2
(L+L− + L−L+) .

We an also do a bit more mathematial work and see that:

L2 = L2
z +

1

2
(L+L− − L−L+ + L−L+ + L−L+)

= L2
z +

1

2
([L+, L−] + 2L−L+)

L2 − L2
z =

1

2
2~Lz + L−L+

L2 − L2
z − ~Lz = L−L+

With all of these relationships in mind, let's move to the real problem we want to solve.

Let us apply the operator L−L+ to a de�nite state of |α, β〉 = |α, βmax〉:

L−L+ |α, βmax〉 = 0.

Why? The ladder operator annot raise β above its maximum value. But, then, it must also be true that:

(L2 − L2
z − ~Lz) |α, βmax〉 = 0

α− β2
max − ~βmax = 0

α = β2
max + ~βmax

So we have our �rst glimpse of an eigenvalue of L2
, and we see that it's related to the maximum value that

β an take. What about onsidering a state where the minimum possible value of β is present? In that ase,

it must be true that:

L− |α, βmin〉 = 0

L+L− |α, βmin〉 = 0

(L2 − L2
z + ~Lz) |α, βmin〉 = 0

α− β2
min + ~βmin = 0

α = βmin(βmin − ~)

And so it must also be true that −βmin = βmax, by these two relations. With all of this information, we an

now solve for the eigenvalues of L2
.

We have learned the following:
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1. The eigenvalues of L2
are related to the integer eigenvalues of Lz, ℓz = m~.

2. While Lz an have a range of eigenvalues, m~ = (0,±1,±2, ...)~, the eigenvalues of L2
are �xed for a

given set of eigenvalues for Lz by the relationship α = βmax(βmax + ~).

It is onvention to say that a system is prepared in a state whose orbital angular momentum quantum number,

ℓ, is related to the z-projetion of the total angular momentum, m, by ℓ = mmax. The atual total orbital

angular momentum of the system is then given by:

√
α =

√

ℓ~(ℓ~+ ~) =
√

ℓ(ℓ+ 1)~.

Note that this is NOT required to be an integer; the only quantity that is guaranteed to be integer-quantized

is the z-omponent of the total orbital angular momentum. We an then say that for a given ℓ, we have a
range of allowed projetions of Lz:

ℓ m
0 0
1 0,±1
2 0,±1,±2

et.

5.5 Solutions to the Hydrogen Atom

It is instrutive to look at the solutions to the hydrogen atom (a full, 3-D spherial potential), to get a sense

of what the angular momentum wave funtions will look like for two partiles in a bound state (a ommon

problem in nature).

ψ(ρ, θ, φ) =

√

(

2

na0

)3(
(n− ℓ− 1)!

2n(n+ ℓ)!

)

e−ρ/2ρℓL2ℓ+1
n−ℓ−1(ρ)Y

m
l (θ, φ)

where

L2ℓ+1
n−ℓ−1(ρ) =

ρ−(2ℓ+1)eρ

(n− ℓ− 1)!

dn−ℓ−1

dxn−ℓ−1

(

e−ρρn+ℓ
)

is an Laguerre polynomial, desribing the radial struture of the orbit with quantum numbers (n, ℓ,m) and

Y m
ℓ (θ, φ) =

√

(2ℓ+ 1)

4π

(ℓ −m)!

(ℓ +m)!
Pm
ℓ (cos θ)eimφ

are the normalized spherial harmonis ontaining the assoiated Legendre Polynomials,

Pm
ℓ (cos θ) = (−1)

m
(1− cos2 θ)m/2 dm

d cos θm

(

1

2ℓℓ!

dℓ

d cos θℓ

[

(

cos2 θ − 1
)ℓ
]

)

.

Some of the spherial harmonis are visualized in Fig 5.

We see that the angular momentum ontrols the struture of the orbits of an eletron, giving them shape.

This seems like a trivial onlusion - of ourse, angular momentum should be the thing that ontrols the

shapes sine it has to do with the orbits themselves - but this basi idea will arry forward into things

like partile deay. When a partile deays, the parent ontains a ertain amount of angular momentum

(potentially both in the form of orbital and spin angular momentum), and any orbital momentum present in

the �nal state ontrol the angular struture of the outgoing partiles. How that orbital angular momentum

manifests and is partitioned depends on the partiular details of the deay, and the spin angular momentum

of the �nal-state partiles.
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Figure 5: Visualization of some of the spherial harmonis. From top to bottom, the rows represent ℓ =
0, 1, 2, 3, while the entries from left-to-right in eah row represent m = −ℓ,−ℓ+1, ..., 0, ..., ℓ− 1, ℓ. From Ref.

[23℄.
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6 Spin Angular Momentum

6.1 Desribing spin using vetor spaes

The observation of spetral lines in the alkali metals reveal that for eah priniple quantum number, n,

there are two orresponding, �nely spaed spetral lines. This implies a two-state phenomenon as regard the

eletron, further splitting eah spetral line into two distint lines. We'll see this in the math later. For now,

let us assume we need to desribe a two-state angular momentum phenomenon. Denote the wave funtion

of the eletron as:

|ψ〉

and for now let us assume that the portion of the wave funtion assoiated with this additional set of states

is independent of the other parts of the wave funtion (e.g. orbital angular momentum), so that

|ψ〉 = |ψ(±, ℓ,m)〉 .

Here, I have denoted the new two-state portion of the wave funtion as |ψ(±)〉. We an short-hand this as

|±〉. We an now expliitly write the two independent states as orthonormal basis vetors in a two-omponent

spae:

|+〉 =
(

1
0

)

, |−〉 =
(

0
1

)

.

These two-omponent objets are not vetors, and they are not salars; they are alled �spinors.� One then

then onstrut an arbitrary state (spinor) from these basis spinors:

|χ〉 = a |+〉+ b |−〉 .
Let us now explore the features of this new quantity, whih is alled �spin angular momentum� or just

�spin� for short. Please note: while the original historial models of spin atually did inlude a spinning

eletron, there is no atual mehanial motion of the eletron present that results in this property. Spin is

an inherent quantum property whih we an desribe using the mehanial analog, but for whih there is

no atual mehanial equivalent in lassial physis. You had a homework problem on that helped illustrate

the point.

It is an empirial fat that if one prepares an atom in a state of zero total orbital angular momentum

and one then measures the angular momentum of the eletron, it still presents two non-zero values of its

angular momentum omponent along the z-diretion:

Sz = ±1

2
~.

Based on this observation, we an then determine the form of the operator required to measure the z-

omponent of the spin angular momentum of the eletron. We do this in two steps.

1. Prepare a state of pure �spin-up,� sz = 1
2~, and measure that omponent using the z-omponent of the

spin operator:

Sz |χ〉 = +
1

2
~ |χ〉 −→

(

s1 s2
s3 s4

)(

1
0

)

= +
1

2
~

(

1
0

)

.

If we solve this, we �nd that s1 = +~

2 and s3 = 0

2. Prepare a seond state of pure �spin-down,� sz = −~

2 . Measure that omponent:

Sz |χ〉 = −1

2
~ |χ〉 −→

(

s1 s2
s3 s4

)(

0
1

)

= +
1

2
~

(

0
1

)

.

Again, if we solve this for the unknown omponents of the spin projetion operator along the z-diretion,

we �nd s3 = 0 and s4 = −~

2 .
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Assembling all of the piees, we �nd the form of the Sz operator:

Sz =
1

2
~

(

1 0
0 −1

)

It an be shown that the operators for projeting the spin of a partile along the x- and y-diretions are

given by:

Sx =
1

2
~

(

0 1
1 0

)

, Sy =
1

2
~

(

0 −i
i 0

)

.

We an write generally that

~S =
~

2
~σ.

Please note that the designation of whih diretion is x,y,z is onventional; we ould, historially, have

talked instead about measuring the spin projetion of an eletron along the x-diretion and de�ned that as

the diretion of the magneti �eld gradient in, say, a Stern-Gerlah-type experiment. But we adopt this

onvention (where the z-axis is, in fat, that diretion) and proeed onsistently.

6.2 Total Angular Momentum

Sine orbital angular momentum alone is insu�ient to desribe the total angular momentum of, say, an

atom, we must reformulate the operator language we developed purely for orbital angular momentum. In

doing so, we an desribe total angular momentum in a system of partiles. Let us de�ne:

~J = ~L+ ~S,

where

~J = (Jx(= Lx + Sx), Jy(= Ly + Sy), Jz(= Lz + Sz)) and eah of the elements of this operator is

also an operator. We an quikly reuse our old de�nitions for ommutation relations of orbital angular

momentum, ladder operators, et.

Jz |j,m〉 = m~ |j,m〉
J2 |j,m〉 = j(j + 1)~2 |j,m〉
J± |j,m〉 =

√

(j ∓m)(j ±m+ 1)~ |j,m± 1〉
[J2, Jz] = 0

[J+, J−] = 2~Jz

[J±, Jz] = ±~J±

We an also quikly reognize, by thinking about total angular momentum as the vetor sum or orbital and

spin angular momenta, that:

j = ℓ+ s

m = mℓ +ms.

We see then that j = 0,± 1
2 ,±1,± 3

2 ,±2, ... and the total magneti quantum number is given by the range:

m = −j, −j + 1
2 , −j + 1, ..., 0, ..., j − 1, j − 1

2 , j.
We also need to de�ne a new operator, whih results from:

J2 = L2 + 2~L · ~S + S2.

We have a �spin-orbit term� present in the total angular momentum squared:

~L · ~S =
1

2

(

J2 − L2 − S2
)

~L · ~S |ℓ,mℓ, s,ms〉 =
~
2

2
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)] |ℓ,mℓ, s,ms〉 .
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6.3 Manipulating Angular Momentum

Consider a urrent loop in a lassial physis setting. If exposed to an external magneti �eld,

~B, a rotational
fore is exerted on the loop. This torque is given by:

~τ = ~µ× ~B

where ~µ is the magneti dipole moment of the loop. In the Bohr or Sommerfeld models of the atom, the

eletron in orbit around the entral nuleus is analogous to a lassial urrent loop. We might then start

from the lassial e�et of a magneti dipole interating with an external magneti �eld, and then extend

that into the quantum realms of orbital angular momentum and spin angular momentum.

6.3.1 Classial Model

Consider a square loop of urrent, I. The magneti moment is given by:

~µ =
I · A
c

n̂

where A is the area of the loop, c is the speed of light, and n̂ is a unit vetor that is determined by a

right-hand rule: url your �ngers on your right hand in the diretion of urrent �ow (the diretion positive

harge is �owing in the iruit) and your thumb then points in the diretion n̂.
Suh a urrent loop, subjeted to an external magneti �eld, experienes the torque given above; this

torque tends to rotate the loop until the magneti moment is parallel to the external magneti �eld, and

then the rotation stops. The interation energy is given by:

Hint =

ˆ

T (θ) dθ =

ˆ

µB sin(θ) dθ = −µB cos θ = −~µ · ~B.

While oneived using a square loop of urrent, the formulas apply just as well to irular �ows of urrent.

So, let's onsider a very simple model of an atom.

Imagine a single eletron, with harge e and mass m, orbiting in a irle under the in�uene of a entral

Coulomb potential (e.g. due to a single proton). The urrent assoiated with the harge is:

I =
∆Q

∆t
=

q

(2πr)/v
=

qv

2πr

where v is the speed of the eletron and r is the orbital radius. The magneti moment of this lassial, �toy�
atom is then:

µ =
IA

c
=

qv

2πr

πr2

c
=
( q

2mc

)

mvr =
q

2mc
L

where L is the angular momentum, L = Iω = mr2 v
r = mvr, of a single orbiting mass. Thus the magneti

moment is related to the single-partile orbital angular momentum, and we have this prefator whih is

written as

γ =
q

2mc

and is known as the �gyromagneti ratio� of the eletron. In general γ = µ
L , and here in this toy model we

have solved exatly for γ.

6.3.2 Quantum Model

In non-relativisti quantum mehanis, one writes the Hamiltonian for a harged partile under the in�uene

of an external magneti �eld in terms of the momentum operator and the vetor potential, where:

~B = ~∇× ~A
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The Hamiltonian is then written as:

H =
1

2m
(~P − q ~A)2

If one solves this for the interation part of the Hamiltonian, whih are the ross-terms involving

~A · ~P , one
�nds that the lassial result holds:

~µ =
q

2Mc
~L.

where M is the mass of the partile (to avoid onfusing it with m, the quantum number of the z-projetion

of angular momentum).

We know that angular momentum is quantized along the z-diretion, so that if we then onsider the

z-omponent of the magneti moment we �nd:

µz =
q

2Mc
m~ (m = 0, ±1, ...) .

The quantity q~/2Mc is referred to as the Bohr Magneton, and for an eletron is found to be:

q~

2Mc
≈ 0.6× 10−8eV/G.

6.3.3 Spin Magneti Moment

There is no lassial analog for spin - it is merely intrinsi angular momentum spei� to a partile. However,

we an assume that, sine in all other ways it manifests as angular momentum, it too must have a relationship

to a magneti moment:

~µ = γ~S.

We an then write γ in a form reminisent of the gyromagneti ratio for the ase of orbital angular momentum:

γ = g
q

2Mc

where g is a fator that needs to be determined experimentally - it is not predited by this framework.

The interation term in the Hamiltonian between an external magneti �eld and this intrinsi magneti

moment is then:

Hspin−B
int = −~µ · ~B =

ge

2Mc
~S · ~B =

ge~

4Mc
~σ · ~B.

We see that the intrinsi magneti moment due to spin is just g/2 Bohr Magnetons. Experimentally, g ≈ 2.
Making the approximation that g = 2 , we observe that the intrinsi magneti moment due to spin is

TWICE that for orbital angular momentum. The fat that g is not exatly equal to 2 is important, and

deeply onneted to the more fundamental theory of nature - quantum �eld theory, and spei�ally quantum

eletrodynamis. It is possible, in that more fundamental model of nature, to alulate g from �rst priniples.

The urrent measurement of g and the theoretial alulation agree very well. The experimentally measured
value is expressed in terms of its deviation from 2:

a =
g − 2

2
= 0.0115965218073(28),

where the unertainty is in the last two deimal plaes and is given in the parentheses. It is known to better

than 1 part in 1 billion.

The measurement of the magneti moment of partiles, suh as the eletron, the muon, and the tau

lepton, are not only tests of the Standard Model of Partile Physis but a means to probe for physis beyond
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the Standard Model. For instane, additional partiles, not desribed by the Standard Model but present

in nature, an partiipate in self-interations (higher-order Feynman diagrams) of the eletron, muon, and

tau lepton and in�uene the magneti moment's value. The measurement of the muon magneti moment is

urrently an area of hot pursuit, as the best measured value is not in perfet agreement with the alulated

value. The predited magneti moment of the tau lepton has been alulated (.f. Ref. [24℄) but to date no

diret measurement of it has been possible due to the very short lifetime of the tau lepton.

6.3.4 A Comment: Stern-Gerlah-style Experiments

A question for you right now would be the following:

• Why does the Stern-Gerlah experiment employ a magneti �eld gradient rather than just a uniform

magneti �eld?

The answer is that a uniform �eld an only rotate the magneti moments to align with the �eld. Sine the

magneti moments of eletrons have two possible orientations along the z-axis - along or against - half the

eletrons should align with and half against the �eld. But this would not split the beam, beause one the

magneti moments are aligned properly with the �eld there is no remaining fore on the atoms or eletrons.

Instead, a magneti �eld gradient is needed to then push the little internal magnets of the atoms/eletrons

in a spei� diretion in the �eld. This an be seen as follows:

~F = −~∇Hint = ~∇(~µ · ~B) = (~µ · ~∇) ~B = µz
∂Bz

∂z
k̂.

This equation tells us that a gradient is required to exert a fore on the tiny magneti moments of the

atom/eletron. It is this tiny fore that allows for the splitting of the beam in a Stern-Gerlah-style experi-

ment. One expets the splitting to our along the magneti �eld axis.

It is important to note that even if one prepares the atoms in a S-G-style experiment in a state L = 0 so
that Lz = 0~, it is still possible to split the beam if:

• The atom ontains an odd number of eletrons in its valene shell (its outermost shell). This leaves

an unpairs spin angular momentum, and this unpaired spin angular momentum has no other spin to

ompensate for its orientation along/against the magneti �eld gradient

• The eletron must ontain an internal unit of angular momentum, to allow for an internal magneti

moment to interat with the external magneti �eld gradient.

Sine the above ours in an S-G-style experiment with L=0, it allows us to infer the presene of internal

angular momentum and measures its value.

6.4 Addition of Spin Angular Momentum

We have so far been foused on very, very simple systems ontaining only a single partile with spin angular

momentum, or spin and orbital angular momentum. But what happens for more realisti systems (e.g.

where you have multiple partiles in various states of spin and orbital angular momentum)? For instane,

we know experimentally that quarks never appear by themselves in experiments; they always appear, when

detetable in a �nal state, in bound pairs (mesons, like the pion) or triplets (baryons, like the proton or

neutron). Thus the struture of matter (e.g. the proton, or pions that partiipate in strong interations)

fundamentally depends on two- and three-partile systems. Regarding spin angular momentum, how does

this business work then?

Consider a simple extension of the one-partile system: a two-partile system. Let eah partile have

spin angular momentum si =
1
2~ and let eah have possible z-axis projetions of its spin angular momentum,

szi = ± 1
2~. We have two partiles, eah with their own spin eigenvetors; this is a two-partile Hilbert spae,

requiring four total vetors to span the spae. We might naively write the four vetors thus:

|ψ1, ψ2〉 = |s1,m1, s2m2〉
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so that the four vetors are:

|1〉 =

∣

∣

∣

∣

1

2
,
1

2
,
1

2
,
1

2

〉

≡ |++〉

|2〉 =

∣

∣

∣

∣

1

2
,−1

2
,
1

2
,
1

2

〉

≡ |−+〉

|3〉 =

∣

∣

∣

∣

1

2
,
1

2
,
1

2
,−1

2

〉

≡ |+−〉

|4〉 =

∣

∣

∣

∣

1

2
,−1

2
,
1

2
,−1

2

〉

≡ |−−〉

Let's see how far we an get with this hypothesis.

We will also need spin operators for this new spae. It is straight-forward to show that:

~S = ~S1 + ~S2

yields exatly what we need, with all the neessary properties for our total spin operator. We then have:

Sz = S1z + S2z.

Let us then proeed to �nd the matrix elements of this operator. We have to onsider operations like

Sz |++〉 = (Sz1 + Sz2) |++〉 = (
1

2
+

1

2
)~ |++〉 = ~ |++〉 .

We an see immediately that, sine this operator leaves the ket unhanged all o�-diagonal elements of Sz

will vanish. But we also see that two of the on-diagonal elements will be idential, leading to a degeneray in

the spae:

Sz =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1









~.

We have two eigenvetors, |+−〉 and |−+〉, that yield the same eigenvalue. The basis vetors we have hosen
naively learly span the vetor spae - the matrix is diagonal. So maybe we have hosen, if aidentally, the

orret basis vetors for our two-partile Hilbert spae.

We must then turn to the S2
operator. Let us ompute the matrix elements of this operator; they are

not immediately obvious (e.g. by inspetion). We see that

S2 = S2
1 + S2

2 + 2~S1 · ~S2.

whih makes this a VERY ompliated operator with ross-terms between the two partiles. You an write

this more simply as follows:

S2 = S2
1 + S2

2 + 2

(

S1zS2z +
1

2
(S1+S2− + S1−S2+)

)

.

One an then brute-fore ompute the matrix elements in our present basis, and in doing so we �nd:

S2 =









2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2









~
2.
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This is very interesting. We see that the middle blok of the matrix is not diagonal. What does this mean?

It means that we haveNOT IDENTIFIED THE COMMON BASIS OF THE TWO-PARTICLE HILBERT

SPACE THAT SIMULTANEOUSLY DIAGONALIZES Sz and S2
. That is why writing down the �naive�

eigenvetors was a bit too naive. The goal in any multipartile system is to identify those eigenvetors that do

simultaneously diagonalize both angular momentum operators, allowing them to ommute. We ould have

foreseen that this would be a problem slightly earlier, sine the default expression for S2
, whih inludes

a lot of ross-terms, does not automatially ommute with Sz. If we an simultaneously diagonalize both

matries (by �nding their ommon eigenbasis), we an guarantee that they ommute.

We might try writing linear ombinations of the kets |+−〉 and |−+〉. Let us see if this does the trik for
us:

|2〉 =
1√
2
(|+−〉+ |−+〉)

|3〉 =
1√
2
(|+−〉 − |−+〉)

What are we doing here, physially, to the original states? We are rotating the kets in their 2-dimensional

spae in order to try to diagonalize the middle blok of the S2
matrix. We an break down the e�et of the

total spin operator on the above states and use that to �gure out what the matrix elements will look like.

For instane:

S2 = S2
1 + S2

2 + 2S1zS2z + S1+S2− + S1−S2+.

We an then onsider the ativity of eah piee on these kets:

S2
1 |2〉 =

[

1

2
(
1

2
+ 1)~2 +

1

2
(
1

2
+ 1)~2

]

|2〉 = 3

2
~
2 |2〉

S2
1 |3〉 =

[

1

2
(
1

2
+ 1)~2 − 1

2
(
1

2
+ 1)~2

]

|3〉 = 0~2 |3〉

Similarly,

S2
2 |2〉 =

3

2
~
2 |2〉

S2
2 |3〉 = 0~2 |3〉

Consider then:

S1zS2z |2〉 = −1

4
~
2 |2〉

S1zS2z |3〉 = 0~2 |3〉

We an then onsider the ation of the ladder operator ross-terms between the two partiles:

S1+S2− |2〉 = S1+

(

|0〉+ C−(
1

2
,
1

2
) |−−〉

)

= C+(
1

2
,−1

2
)C−(

1

2
,
1

2
) |+−〉

and

S1−S2+ |2〉 = S1−

(

C+(
1

2
,−1

2
) |++〉+ |0〉

)

= C−(
1

2
,
1

2
)C+(

1

2
,−1

2
) |−+〉
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so that, together:

[S1+S2− + S1−S2+] |2〉 = C+(
1

2
,−1

2
)C−(

1

2
,
1

2
) |2〉 = ~

2 |2〉

while for |3〉 we an show that:

[S1+S2− + S1−S2+] |3〉 = 0~2 |3〉 .
Putting all the piees together and applying the S2

matrix, we �nd:

〈2|S2 |2〉 = 〈2|
(

2~2
)

|3〉 = 2~2

〈3|S2 |3〉 = 〈3| 0~2 |3〉 = 0~2

while:

〈2|S2 |3〉 = 〈3|S2 |2〉 = 0~2

What about the Sz operator? Have we maintained its diagonalization? A quik hek shows we have -

that

(Sz1 + Sz2) |2〉 = 0~

(Sz1 + Sz2) |3〉 = 0~

We onlude that by omposing these linear ombinations of the single-partile states we have arrived at

the eigenvetors of the S2
and the Sz operator; in this basis, both are diagonal and guaranteed to ommute.

Three of the eigenvetors have spin-1 (with three di�erent z-projetions of the two-partile spins) and one

has spin-0. We an denote the states by ψs sz , where s is the total spin quantum number and sz is the total
z-omponent projetion quantum number. We then �nd:

s = 1 |ψ1+〉 = |++〉
|ψ10〉 = 1√

2
(|+−〉+ |−+〉)

|ψ1−〉 = |−−〉

s = 0 |ψ00〉 = 1√
2
(|+−〉 − |−+〉)

6.5 An Appliation of Addition of Spin Angular Momentum: Meson Spe-

trosopy

In this brief setion, I will show you how useful it is to be able to reognize basi fats about the struture

of matter utilizing only the most basi information we derived in the previous setion.

Mesons are olorless bound states of a pair of quarks. For a variety of reasons, not the least of whih is

the kineti energy available to the quarks in the bound state, the heavier the quark the more we an treat

the bound state in a non-relativisti way in QCD (the mathematial theory of the strong interation). One

an imagine a pair of heavy quarks, for instane bottom quarks, bound together in a olorless state. To do

this requires one quark and one anti-quark. A simple example is bottomonium, bb̄.
Let us onsider an orbiting pair, bb̄, in a state of L = 0 total orbital angular momentum. The only

angular momentum available to the system, then, is spin. From the above example, we an hypothesize the

existene of a spin-1 �triplet� of states and a spin-0 �singlet� state. The spin-1 triplet onsists of three states

with di�ering z-projetions of their total spin angular momentum, while the singlet onsists only of a single

total S = 0 state.

Given all the various possible radial orbit on�gurations, angular momentum on�gurations, and the spin

singlet and tripler strutures for eah possibility, you get a rih spetrum of states. For the lowest-energy

states and for the ase where there is no orbital angular momentum (L=0), we simply have the triplet states,

13S1, and the singlet, 11S0. These are known in the HEP ommunity as the �Upsilons� (disovered in 1977),

or Υ(1S), and the ηb(1S) (the �ay-tuh sub bee� or �ay-tuh bee�), respetively. The ηb(1S) was only disovered
in 2008, �rst by the BaBar experiment and then on�rmed by a seond BaBar Collaboration measurement

and then an independent measurement by the Belle Collaboration.
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7 The General Problem of Adding Angular Momentum

In general, our system of partiles may ontain those with varying spin angular momenta and also orbital

angular momentum. We need to appeal to the notation developed in Setion 6.2 and proeed to outline the

general problem of adding angular momentum of both sorts.

When the Jz operator ats on a state desribed by the ket of a two-partile system (involving both orbital

and spin angular momentum, we expet to �nd that:

Jz |j1m1, j2m2〉 = (m1 +m2)~ |j1m1, j2m2〉 .

We know already from some experiene with the two-spin-

1
2 partile ase that the matrix of this operator

will be both diagonal and degenerate (there are multiple ways to ombine the z-omponents of the two

partiles' spins and orbital angular momenta and still ahieve the same total z-projetion). The exeption

to the previous statement is when m = ±(j1 + j2); in those ases, there is just one way to ahieve eah of

the two possible maximum projetions.

The general problem of adding angular momentum involves:

• Reognizing that the kets representing the allowed ways of orienting L and S are not neessarily the

eigenstates of both J2
and Jz .

• Solving the eigenvalue problem to identify the ommon eigenstates of the two operators (whih, of

ourse, means making Jx and Jy non-diagonal).

• By doing this, we obtain the ommon eigenstates for the two operators and thus the measurable

states of the system. This is really what is meant by �solving the general problem of adding angular

momentum� - identifying the physial, measureable states of the multi-partile system.

We an ask a few questions now.

1. How many kets will there be? For an n-partile system, the total number of states is given by:

n
∏

i=1

(2ji + 1)

For example, in a system of 2 partiles with ℓ = 0 and s = 1
2 (the ase we did in the notes earlier), we

expet (2s1+1)(2s2+1) = 4 total kets. This is, in fat, what we found. For the problem in Homework

3 involving ℓi = 0 and si =
1
2 for three partiles, we expet (2s1 +1)(2s2 +1)(2s3 +1) = 8 total states

(whih, again, you an verify manually . . . but this makes it so muh simpler to �nd the total number

of kets).

2. How will we label the states? The states an be labeled by their total angular momentum, the z-

projetion of the total angular momentum, and the total angular momenta of eah individual partile

in the spae:

|jm, j1j2〉 with j1 + j2 ≥ j ≥ j1 − j2, j ≥ m ≥ −j.

This an be seen by thinking about what happens when you add two simple spae vetors. The

maximum-length vetor you an make from the two is one whose length is the sum of eah of their

individual lengths; the shortest you an make has a length given by the di�erene of their individual

lengths. The z-projetions for eah j state simply go from j to −j . Shankar writes the possible kets in
matrix format, labeling eah row and olumn by kets of total j, |j,m〉, suppressing the j1and j2 labels
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to simplify the notation:

|j1 + j2, j1 + j2〉
|j1 + j2, j1 + j2 − 1〉 |j1 + j2 − 1, j1 + j2 − 1〉
|j1 + j2, j1 + j2 − 2〉 |j1 + j2 − 1, j1 + j2 − 2〉 |j1 − j2, j1 − j2〉

. . .

. . . . . .

. . .
|j1 + j2,−(, j1 + j2 − 2)〉 |j1 + j2 − 1,−(, j1 + j2 − 2)〉 |j1 − j2,−(j1 − j2)〉
|j1 + j2,−(, j1 + j2 − 1)〉 |j1 + j2 − 1,−(, j1 + j2 − 1)〉
|j1 + j2,−(, j1 + j2)〉

3. How does one then express the kets of total-j in terms of linear ombinations of the produt kets? That

is, how do you relate the above states to the states |j1m1, j2m2〉? That is the hardest part, as you

learned on Homework 3.

7.1 Appliation to the simple system of two spin-1/2 partiles

To answer the last question, let us revisit the two-spin-

1
2 partile example from earlier in the notes. Rather

than grinding through all that matrix algebra, we ould instead have started from the total-j kets we expet

for this system: jmax = j1 + j2 = s1 + s2 = 1, and jmin = |j1 − j2| = |s1 − s2| = 0. There are only two

possibilities. So:

|1, 1〉
|1, 0〉 |0, 0〉
|1,−1〉

Consider the TOP STATE in eah olumn. For the �rst olumn, this is simply:

|1, 1〉 = |++〉 .

As we said earlier, there is only one way to put both spin projetions up, so there is an easy identity between

the total-j ket and the produt ket, given above. How do we then get the other states in this olumn?

Simple: apply the total angular momentum lowering operator - let it do all the work for you. In this

ase:

J− |1, 1〉 = J− |++〉

is what we want to do next. We know that:

J− |1, 1〉 = C−(1, 1) |1, 0〉

by de�nition. The oe�ient we know how to alulate:

J− |j,m〉 = ~

√

(j +m)(j −m+ 1) |j,m− 1〉 .

In this ase:

j = 1,m = 1 : C−(1, 1) = ~
√
2.

So we have:

J− |1, 1〉 = ~
√
2 |1, 0〉 .
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We then need to �gure out how this then relates to the produt kets. We an also write:

J− |++〉 = (J1− + J2−) |++〉

= C−(
1

2
,
1

2
) |−+〉+ C−(

1

2
,
1

2
) |+−〉

= ~ |−+〉+ ~ |+−〉 .

Combining what we have learned:

J− |1, 1〉 = ~
√
2 |1, 0〉 = ~ (|+−〉+ |−+〉)

and solving for the state we want:

|1, 0〉 = 1√
2
(|+−〉+ |−+〉)

whih is EXACTLY what we found from all sorts of ompliated matrix omputation earlier! This is muh

simpler! If one lowers again, one �nds what one expets:

|1,−1〉 = |−−〉 .
Now, what about the j = 0 state? Again, it will be a linear ombination of the only two m = 0 states

that are available: |+−〉 and |−+〉. But, it won't be the same linear ombination that yielded |1, 0〉. It must
be ORTHOGONAL to that linear ombination, and its oe�ients must be real (as a matter of onvention

- the omplex portions are absorbed into the kets themselves, by onvention). Thus:

|0, 0〉 = α |+−〉+ β |−+〉 .

Applying these onstraints, we �nd:

1. From orthogonality:

〈0, 0|1, 0〉 = 0 =
1√
2
(α+ β)

0 = α+ β.

2. From the onstraint of real oe�ients:

〈0, 0|0, 0〉 = α2 + β2 = 1.

If we then solve, we �nd:

α = −β

and so we an hoose α = 1 and β = −1, yielding:

|0, 0〉 = 1√
2
(|+−〉− |−+〉) .

Again, no need to go through all the messy diagonalization. Things get a lot simpler here.

This is the problem of �nding the Clebsh-Gordon Coe�ients - the numbers that multiple the states in

the linear ombination of produt kets needed to express the total-j kets (more on this problem generally

in a moment). To �nd the top state in the next olumn (after to �nish the easy one), and based on the

onstraints of real oe�ients and orthonormality, we �nd:

|j1 + j2 − 1, j1 + j2 − 1〉 =
(

j1
j1 + j2

)1/2

|j1j1, j2(j2 − 1)〉 −
(

j2
j1 + j2

)1/2

|j1(j1 − 1), j2j2〉

for the two-partile ase.
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7.2 The Clebsh-Gordon Coe�ients

The problem we are trying to solve, in general, boils down to �nding those messy oe�ients that one needs

in order to ombine the produt kets with the total-j kets. That's it. That's the problem.
These oe�ients are alled Clebsh-Gordon Coe�ients. We an write them in general bra-ket notation

as:

|jm, j1j2〉 =
∑

m1

∑

m2

|j1m1, j2m2〉 〈j1m1, j2m2|jm, j1j2〉

where

〈j1m1, j2m2, ..., jnmn|jm, j1j2...jn〉 = 〈j1m1, j2m2, ..., jnmn|jm〉

are the Clebsh-Gordon Coe�ients themselves. They have the following properties:

1. 〈j1m1, j2m2|jm〉 6= 0 only if |j1 − j2| ≤ j ≤ j1 + j2 - this is the impliation of the Triangle Inequality.

We must be able to form a triangle with sides of length j1, j2, and j .

2. 〈j1m1, j2m2|jm〉 6= 0 only if m1 +m2 = m

3. They are real, by onvention

4. 〈j1j1, j2(j − j1|jj〉 > 0 by onvention (this �xes the sign of the top state)

5. 〈j1m1, j2m2|jm〉 = (−1)j1+j2−j 〈j1(−m1), j2(−m2)|j(−m)〉 - this tells us the oe�ients for our nega-
tive m states given our positive m states.

7.3 The Expliit Formula for Clebsh-Gordon Coe�ients

The expliit formula for Clebsh-Gordon Coe�ients is given by:

Cm1,m2,m
j1,j2,j

= δm,m1+m2

√

(2j + 1)(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 + j)

(j1 + j2 + j + 1)!

×
√

(j +m)!(j −m)!(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!

×
∑

k

(−1)k

k!(j1 + j1 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!(j − j2 +m1 − k)!(j − j1 −m2 + k)!

where k is any zero or positive integer suh that the fatorial argument is non-negative.

The Partile Data Guide [25℄ ontains a helpful table of these oe�ients, reprodued in Fig. 6.
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Figure 6: Reprodution of the table of Clebsh-Gordon Coe�ients from Ref. [25℄.
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7.4 Comment: Appliation to the three spin-1/2 partile system

Let's try applying this to the more ompliated problem in Homework 3: three spin-

1
2 partiles. We an

only begin the omputation, as the seond major step involves a more general version of the Clebsh-Gordon

Coe�ients.

The highest state we an get is |+++〉. This state has jmax = j1 + j2 + j3 = 3
2 and the maximum

z-projetion. Thus we identify:

∣

∣

∣

∣

3

2
,
3

2

〉

= |+++〉 .

We then apply the lowering operator to �nd the next state in this olumn:

J− |3/2, 3/2〉 = ~

√

(3/2 + 3/2)(3/2− 3/2 + 1) |3/2, 1/2〉
= ~

√
3 |3/2, 1/2〉 .

Also,

J− |+++〉 = (J1− + J2− + J3−) |+++〉
= ~ |−++〉+ ~ |+−+〉+ ~ |++−〉 .

Combining this, we learn

|3/2, 1/2〉 = 1√
3
(|−++〉+ |+−+〉+ |++−〉) .

Continuing, we on�rm the other states:

|3/2,−1/2〉 =
1√
3
(|− −+〉+ |−+−〉+ |+−−〉)

|3/2,−3/2〉 = |− − −〉

How do we then get to the next olumns of states? Well, let's start with �nding jmin. This is determined

from:

jmin = |j1 + j2 − j3| = |j1 − j2 + j3|

whih tells us that there are two ways to form the minimum state by ombining individual ji quantum
numbers. Well, in that olumn we know that we have the top-most state with m = j1 + j2 + j3 − 1 = 1/2.
We know that it will be orthogonal to |3/2, 1/2〉 but will have the same z-projetion. It must be normalized
to unity. The produt kets that yield m = 1/2 are:

|++−〉 , |+−+〉 |−++〉

We then have to determine the highest state in the next olumn. The Clebsh-Gordon Coe�ients are

determined for the ase where 2 partiles ombine into single-partile hybrid states. We have a 3-partile

ase. We need a more general version of the Clebsh-Gordon Coe�ients.

I won't go through the rest of the alulation, but merely point the way. We need the Wigner 3-jm

symbols to go to a 3-partile system. They are written as:

|jm, j1j2j3〉 =
∑

m1

∑

m2

∑

m3

(

j1 j2 j3
m1 m2 m3

)

|j1m1, j2m2, j3m3〉 .

Many omputational frameworks, like Mathematia, provide funtions to alulate these for you. They

are related to the Spherial Harmonis in that they give you the integral of the produt of three spherial

harmoni funtions.
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7.5 Partile Deay

The addition of angular momentum is useful not only for �nding the struture of bound states of partiles;

you an also use it to determine the possible deay modes of a partile, based purely on restritions on

angular momentum imposed by onservation. For instane, we an explore how the spin-0 Higgs Boson

might deay (while at rest) to various �nal states. We want to �nd out how to express the state |0, 0〉 in
terms of produt kets for various possible �nal states, suh as 2 spin-1/2 partiles, two spin-1 partiles, et.

We an begin with the two spin-1/2 partile ase, and use a table of Clebsh-Gordon Coe�ients to

�gure out the answer. We know we want the total-j ket, |0, 0〉, and we want it to deay to a pair of spin-1/2

partiles. For instane, how are the angular momenta of a pair of tau leptons, or bottom quarks, arranged

in produt ket spae when they are produed from a parent spin-0 partile? Reading from the table for suh

a pair,

|0, 0〉 = 1√
2

(∣

∣

∣

∣

1

2
,+

1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

−
∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,+

1

2

〉)

.

We've already seen this, of ourse, when trying to ompose a new state out of an original pair of spin-1/2

partiles.

How about the deay of the Higgs boson to something like a pair of Z or W bosons, whih eah have

spin-1? What might this look like? Reading from the table for 1,1 Clebsh-Gordon Coe�ients:

|0, 0〉 = 1√
3
(|1,+1〉 |1,−1〉 − |1, 0〉 |1, 0〉+ |1,−1〉 |1,+1〉)

We see that suh a deay is possible, and ontains a ompliated (but apparently uniformly probable)

distribution of polarizations of the spins of the spin-1 partiles in the �nal state.

Consider the deay of a Z-boson to a pair of fermions with spin-1/2. In that ase, we have a S = 1
partile deaying into two S = 1/2 partiles. We an write down the relationship between the total-j kets
that desribe the possible states of the Z boson and the produt kets that desribe the possible states of the

individual partiles in the �nal state,

|1, 1〉 =

∣

∣

∣

∣

1

2
,
1

2

〉 ∣

∣

∣

∣

1

2
,
1

2

〉

|1, 0〉 =
1√
2

(∣

∣

∣

∣

1

2
,
1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

+

∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,
1

2

〉)

|1,−1〉 =

∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

We see that there is a rih set of struture in the outomes of suh a deay. We'll explore this further in

the future.

8 Relativisti Quantum Mehanis

For the rest of these notes, we will use a standard set of units ommon to high-energy partile physis named

�natural units.� Sine we are typially dealing with speeds near that of light and angular momenta that are

at the subatomi level, we will adopt the following onvention:

~ = 1

c = 1

All speeds and angular momenta are normalized to that of light and the redued Plank's Constant, respe-

tively. Sine:

~c ≈ 197MeV · fm,
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we an relate energy and distane through Plank's onstant and the speed of light. Namely:

~c = 1 −→ 1 fm =
1

197
MeV−1.

In this system of units, the Shroedinger Wave Equation for a free partile would be written:

H |ψ〉 =
1

2m
P 2 |ψ〉

i~
∂

∂t
|ψ〉 = − ~

2

2m
∇2 |ψ〉

i
∂

∂t
|ψ〉 = − 1

2m
∇2 |ψ〉

again, keeping in mind that E = i ∂
∂t and

~P = i~~∇.

Remember also that the onservation of energy equation looks as follows:

E2 = p2c2 +m2c4,

whih simpli�es in natural units to:

E2 = p2 +m2.

The invariant of the above equation is the mass, and so expressing this as an equation in terms of the

invariant and the variable omponents (total energy and momentum):

m2 = E2 − p2.

We an express energy and momentum as a four-vetor:

p = (E, ~p) ≡ pµ.

To ompute the square of this four-vetor and reover the invariant:

p
2 = m2,

we need to introdue a matrix in between the produt of the two vetors that introdues the sign �ip. We

an see what this must look like:

m2 = p
2 =

[

E px py pz
]









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















E
px
py
pz









= E2 − p2.

We refer to pµ (the olumn vetor, in this ase) as the ontravariant vetor and pν =
∑

ν pνg
µν

as the

ovariant vetor, the produt of the row vetor with this matrix, gµν . This new 4x4 matrix is known as �the

metri� - it transforms ovariant into ontravariant vetors (and vie versa). If you want to learn more about

all of this, dig a bit into general relativity (whih relies on this onept entirely). Contravariant vetors

transform in the same way as the oordinates in a oordinate system, while ovariant vetors transform the

opposite way of the oordinates (the same way that the oordinate axes would hange - they �o-vary� with

the axes under a transformation of the oordinate system).
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8.1 The Dira Equation

The Shroedinger Wave Equation is an inomplete desription of nature in several ways:

• It does not inorporate the postulates of speial relativity (for instane, its expression of energy on-

servation is expliitly lassial, ignoring internal energy).

• It failes to reognize that the potentials themselves may be quantized (as one might expet sine photons

are invisible units that transmit the eletromagneti fore, yet nowhere does the photon appear in the

SWE).

We an resolve the �rst but not the seond in this leture series. Resolving the �rst will already be su�ient

to ome to a omplete, quantum understanding of spin. Spin has so far been an ad ho two-state phenomenon

that we have added by hand in the SWE. We will now step bak to �rst priniples (energy onservation and

the speial theory of relativity) and derive the orret, relativisti wave equation.

Paul Adrian Maurie Dira derived this equation and his omplete work was published in 1932 [20℄.

However, the derivation of the Dira Equation ourred in 1928. We will derive this equation and determine

the form of its solutions, onsidering a �free partile� ase (as Dira did).

The speial relativisti expression of energy onservation is not a linear equation; it is a quadrati equa-

tion:

E2 = m2 + |~p|2

whih admits both positive and negative energy solutions. Dira sought a LINEAR expression of the same

form, to avoid this problem. That linear expression would then serve the role of the basis of a relativistis

wave equation, akin to the SWE:

H |ψ〉 = E |ψ〉 (free partile ase).

We an begin with the hypothesis that:

H |ψ〉 =
(

~α · ~P + βm
)

|ψ〉 ,

whih is a guess at a linear equation that now inludes internal energy (mass). We must be able to reover

from this the speial relativisti expression of energy onservation (whih is the orret expression, after all).

Thus we must �nd that:

H2 |ψ〉 =
(

~P 2 +m2
)

|ψ〉 .

These two equations together represent the Dira Equation; both must hold to be true, in order to marry

the SWE with relativity.

We an press forward and determine how this equation desribes partiles absent external in�uenes. We

need to determine these unknown oe�ients - ~αand β. Algebraially:

H2 |ψ〉 = (~α· ~P + βm)(~α · ~P + βm) |ψ〉

It is onvenient to employ Einstein Summation Notation for the ontinued working of this equation. In

Einstein Summation Notation, any repeated index that appears in an equation represents and impliit sum

over that index. So, instead of writing:

~α · ~P =
3
∑

i=0

αiPi

we write

~α · ~P = αiPi
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and imply that the sum must be taken over all values of i. If we adopt this notation, we an resume in a

more simple and approahable way the squaring of terms we have just undertaken:

H2 |ψ〉 = (αiPi + βm)(αjPj + βm) |ψ〉
=

(

α2
iP

2
i + (αiαj + αjαi)PiPj + (αiβ + βαi)Pim+ β2m2

)

|ψ〉 .

We already see something quite interesting here, writing out all the unique terms:

• The unknown oe�ients annot be numbers. Why? Beause in order for the above equation to math

the relativisti expeation,

H2 |ψ〉 = (P 2 +m2) |ψ〉 ,

it must be true that αiαj + αjαi = 0 and αiβ + βαi = 0. These oe�ients must anti-ommute.

Numbers don't anti-ommute. These objets must be, at minimum, matries (or, in a general language,

tensors).

• The square of these oe�ients must yield the identity:

α2
i = I and β2 = I.

Again, this is to satisfy the requirement that squaring the Hamiltonian must yield and expression for

energy onservation onsistent with speial relativity.

We have ertainly enountered objets that anti-ommute like this, with these rules: the Pauli Spin Matries.

You explored some of these properties on your �rst homework. That e�ort was not in vain.

8.1.1 The Coe�ients of the Dira Equation

We are left to determine the exat form of these oe�ients, given the above onstraints from speial

relativity. In fat, going a bit further, one will �nd that these matries must satisfy the following additional

onstraints:

• They must be Hermitian.

• They must be traeless.

• They must be of even dimensionality (2x2, 4x4, 6x6, et.)

• They must have eigenvalues of ±1

The minimum dimension matries that satisfy all four of these requirements are 4x4. The hoie of the

matri representation is not unique, but we will employ the Dira-Pauli representation:

~α =

[

0 ~σ
~σ 0

]

β =

[

I 0
0 −I

]

.

The physis should only depend on the properties of the matries and not their spei� representations.

8.1.2 The Solutions to the Dira Equation

We see already that the solutions to this equation, |ψ〉, must be represented in matrix notation minimally

by a 4-row olumn-vetor. This solution is referred to as a Dira Spinor. We have four solutions for eah

�partile� for this equation . . . a bounty of solutions, whose physial meaning needs to be understood.
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8.1.3 The Covariant Form of the Dira Equation

We have arrived at a form for the Dira Equation:

H |ψ〉 = i~
∂

∂t
|ψ〉 =

([

0 ~σ
~σ 0

]

· i~+
[

I 0
0 −I

]

m

)

|ψ〉 .

It is useful to write this in another form. Multiplying from the left by β:

iβ
∂

∂t
|ψ〉 = −iβ~α · ~∇ |ψ〉+m |ψ〉

[

i

(

β
∂

∂t
+ β~α · ~∇

)

−m

]

|ψ〉 = 0

The operator on the left-most side of the above equation looks like the produt of two four-vetors. One of

the four-vetors is one ontaining the partial derivatives over spae and time:

∂µ =

(

∂

∂t
, ~∇
)

while the other is a four-vetor of matries is

γµ = (β, β~α)

The above form is known as the ovariant form of the Dira Equation, and an be simply written as:

[iγµ∂µ −m] |ψ〉 = 0.

The solutions to this equation will be the wave funtions we seek. There are four omponents to the wave

funtion; this equation an be understood to be a set of FOUR di�erential equations that ouple the four

omponents of a single olumn vetor. This is most easily seen by writing this as:

4
∑

k=1

[

∑

µ

i (γµ)jk ∂µ −mδjk

]

|ψk〉 = 0.

8.2 Solutions of the Dira Equation

We an now proeed to solve the eigenvetor and eigenvalue problem of the Dira Equation. We an guess

at the form of the solutions, whih will look muh like the old plane-wave solutions of the SWE but now

with an unknown 4-omponent olumn matrix attahed:

|ψ〉 = u(p)e−ip·x

where p is a four-vetor, p = (E, px, py, pz), as is x = (t, x, y, z). The objet u(p) is the unknown four-

omponent spinor whose form we need to determine. If we substitute this solution form into the Dira

Equation:

[iγµ∂µ −m]u(p)e−ip·x = 0
[

iγµ(∂µ(u(p)e
−ip·x))−mu(p)e−ip·x] = 0

[

iγµu(p)(∂µ(−ip · x))e−ip·x −mu(p)e−ip·x] = 0
[

iγµu(p)(−ipµ)e−ip·x −mu(p)e−ip·x] = 0
[

iγµ(−ipµ)u(p)e−ip·x −mu(p)e−ip·x] = 0

[γµpµ −m]u(p) = 0
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It is ommon to denote ovariant produts of gamma matries with other matries or vetors as:

6 p = γµpµ.

We an then write:

[ 6 p−m]u(p) = 0.

We now want to �nd the solutions to this. This is just an eigenvalue equation, so we already know

that the eigenvalues are ±m. They are masses. We need to identify the eigenvetors that go with these

eigenvalues. We an see this if we take the momentum of the partile to be zero (at rest). Then p = 0 and

H u(p) = (~α · ~p+ βm)u(p) = Eu(p)

H u(p) = βmu(p) =

[

mI 0
0 −mI

]

u(p).

This equation yields four eigenvalues: m, m, −m, and −m. That means we have two positive-energy states

and two negative energy states. The eigenvetors an be seen to be:









1
0
0
0









,









0
1
0
0









,









0
0
1
0









,









0
0
0
1









.

The Feynman-Stukelburg interpretation of these states is the one ommonly adopted in modern pratie. In

this interpretation, we asribe the �rst two eigenstates with E>0 to be the partile eigenstates. The seond

pair of eigenstates as E>0 antiu-partile states, to avoid the problem of negative energies.

If we allow for non-negative momentum, then the eigenvalue equation merely beomes:

H u(p) =

[

mI ~σ · ~p
~σ · ~p −mI

] [

uA
uB

]

= E

[

uA
uB

]

.

Here, we have split the 4-omponent olumn vetor (the overall Dira Spinor) into two, two-omponent

spinors. We then see that:

~σ · ~p uB = (E −m)uA

~σ · ~p uA = (E +m)uB

For the two E>0 solutions, we an take:

u
(s)
A = χ(s)

where

χ(1) =

[

1
0

]

, χ(2) =

[

0
1

]

.

We then have only to speify the lower omponents of the four-omponent eigenvetors by inserting these

hoies into the seond equation above:

~σ · ~p χ(s) = (E +m)u
(s)
B .

Solving for u
(s)
B we �nd:

u
(s)
B =

~σ · ~p
E +m

χ(s).
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The positive-energy solutions are then:

u(s) = N

(

χ(s)

~σ·~p
E+mχ

(s)

)

, E > 0.

Here, N is the normalization onstant.

We an repeat this proedure for the E<0 solutions. Here, we an take:

u
(s)
B = χ(s).

Then:

u
(s)
A =

~σ · ~p
E −m

u
(s)
B = − ~σ · ~p

|E|+m
χ(s).

Thus the negative energy solutions are:

u(s+2) = N

(

− ~σ·~p
|E|+mχ

(s)

χ(s)

)

, E < 0.

8.3 Spin and the Dira Equation

We now see where spin omes from. Enforing speial relativity as the orret desription of nature at

all veloities, we are required to write a wave equation (the Dira Equation) that is linear in energy and

momentum but solved minimally only by four-omponent wave funtions. The solutions above tell us the

rest of the story. They are eah four-omponent objets, and so for a single partile there are FOUR solutions

to the equation: two are positive-energy, and two are negative-energy (interpreted to mean E>0 anti-partile

states). But we see that for the partile or the anti-partile, there are still TWO solutions. There is an

EXTRA two-fold degeneray for eah partile whih was not present in the non-relativisti SWE. Spin is an

inevitable onsequene of a universe that obeys the postulates of speial relativity. We are fored to have it.

This is amazing.

This also implies something else. Sine there is an extra two-fold degeneray in the solutions, there

must also be one more observable in nature that ommutes with both the Hamiltonian and the momentum

operator. The eigenvalues of this additional operator an be used to distinguish the states. Just as in the ase

of adding angular momentum and having degeneray in the Sz matrix whih is resolved by diagonalizing the

S2
matrix, we have a situation where there is a two-fold degeneray left in the problem even after working

through the H and P parts of the problem.

A ommon hoie for this additional observable is the following, whih you an show ommutes with H

and P:

~Σ · p̂ =
(

~σ · p̂ 0
0 ~σ · p̂

)

,

where p̂ = ~p/|~p| is a unit vetor pointing in the diretion of momentum. We an multiply this by any onstant

we like and preserve the properties of the original matrix. Therefore, we an hoose to onsider:

~S =
1

2
~σ

and we an think of this new observable as the projetion of spin along the diretion of motion of the partile:

1

2
~σ · p̂.

This projetion is known as �heliity.� We an see that this projetion has TWO possible eigenvalues:

λ =

{

+ 1
2 "positive heliity"

− 1
2 "negative heliity"
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9 Spin and Partile Deay

In this setion, we will explore how angular momentum (inluding spin) a�ets the angular distributions of

�nal-state partiles after an initial state deays. I am indebted to Kent Hornbostel for his insights that led

to the writing of this part of the notes. This is a synthesis of what we have developed so far.

We will begin by understanding the relationship between angular momentum and rotation. We will

then onsider what happens if we rotate the �nal states away from, for instane, a hypothetial z-axis.

By onsidering these two piees, we will build a toolkit for evaluating angular distributions of �nal-state

partiles. This an be further developed when onsidering the full heliity formalism for desribing partile

deay and distributions of �nal-state partiles.

9.1 Angular Momentum and Rotation

We an begin by onsidering what is means to make a rotation in physial spae about a partiular axis.

Let us hoose the axis to be the z-axis. Choosing a point in the x-y plane, marked by (x, y), we an imagine

rotating about the z-axis by an angle φ. The result is a new oordinate, (x′, y′), whih an be written in

terms of the old oordinate as follows:

x′ = x cosφ− y sinφ

y′ = x sinφ+ y cosφ.

We see that this is merely a matrix operation on a olumn vetor:

[

x′

y′

]

=

[

cosφ − sinφ
sinφ cosφ

] [

x
y

]

.

The 2x2 matrix is a rotation matrix, desribing an arbitrary rotation by φ about the z-axis. We might write

this rotation as:

|x′〉 = U(φ) |x〉 .

What if we were interested in a more general problem - how to represent a very small (in�nitesimal) rotation

of a state around an axis (again, let us hoose the z-axis)? For a zero rotation, the rotation matrix is simple:

U(0) = I,

the identity matrix. An in�nitestimal rotation, then, would be a small perturbation on top of the identity

matrix. We an write the form of this matrix quite simply in terms of the very small rotation angle, denoted

as δφ,
U(δθ) = I − α δφ.

To get at the form of the matrix added to the identity, we an onsider the Taylor Expansion of the osine

and sine funtions:

sin δφ = δφ− 1

3!
δφ3 +

1

5!
δφ5 + ...

cos δφ = 1− 1

2!
δφ2 +

1

4!
δφ4 + ...

and for very small angles (again, in�nitesimal rotations)

sin δφ ≈ δφ

cos δφ ≈ 1.
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Revisiting our rotation of the spatial oordinates:





x′

y′

z′



 =





cos δφ − sin δφ 0
sin δφ cos δφ 0
0 0 1









x
y
z





≈





1 −δφ 0
δφ 1 0
0 0 1









x
y
z





=





x
y
z



− δφ





y
−x
z





= I





x
y
z



− δφ





0 1 0
−1 0 0
0 0 1









x
y
z





This tells us how a pure oordinate state would be rotated, and we an even �nd the form of α for a

pure-oordinate rotation. We might then onsider what happens to a physial state (e.g. a funtion), that

depends on these oordinates, when ated upon by the very same matrix. In this ase, onsider a state

|ψ(x, y, z)〉 .

We want to determine now the form of the operator that rotates the wave funtion by rotating oordinates

about the z-axis. We know that:

(I − δφα) |x, y, z〉 = |x− δφ y, y + δφ x〉 .

We want to �nd the transformed wave funtion, |ψ′〉, after ating with the rotation operator. We an write:

|ψ′〉 = (I − δφα) |ψ〉

= (I − δφα)

ˆ +∞

−∞
|x, y, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
(I − δφα) |x, y, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
|x− δφ y, y + δφ x, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
|x′, y′, z′〉 〈x′ + δφ y′, y′ − δφ x′, z′|ψ〉d3x′.

In the last line, we have made the simple variable substitution: x′ = x − δφy, y′ = y + δφx, and z′ = z.
Multiplying from the left with 〈x′, y′, z′|, only one term in the integral survives the inner produt and we

�nd:

〈x′, y′, z′|ψ′〉 = 〈x′, y′, z′|(I − δφα)|ψ〉 = 〈x′ + δφ y′, y′ − δφ x′, z′|ψ〉.

We an identify ψ(x, y, z) = 〈x, y, z|ψ〉 and ψ(x+ δφ y, y− δφ x, z) = 〈x+ δφ y, y− δφ x, z|ψ〉 (sine primes
appear on the oordinates on both sides of the above equation, we an merely drop them for onveniene).

The last step we need in order to identify our mystery matrix is to simply Taylor Expand the wave

funtion about the small added piees on eah of the x and y oordinates, yδφ and xδφ:

〈x, y, z|(I − δφα)|ψ〉 = ψ(x+ δφ y, y − δφ x, z)
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= ψ(x, y, z) +
∂ψ

∂x
(δφ y) +

∂ψ

∂y
(−δφ x) + ...

≈ ψ(x, y, z) +
∂ψ

∂x
(δφ y) +

∂ψ

∂y
(−δφ x)

= ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ.

We are nearly there. Writing out the left side of the above equation and relating the two sides:

〈x, y, z|(I − δφα)|ψ〉 ≈ ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ

ψ(x, y, z)− δφ〈x, y, z|α|ψ〉 ≈ ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ.

We thus �nd that:

α =

(

x
∂

∂y
− y

∂

∂x

)

in the oordinate basis. This looks suspiiously like

Lz = −i~
(

x
∂

∂y
− y

∂

∂x

)

and so we merely make the identity that:

α =
i

~
Lz.

We have arrived at the onlusion that the generator of in�nitesimal rotations of the wave funtion, about

the z-axis, is just the Lz angular momentum operator. An in�nitesimal rotation about the z-axis is then

written:

Uz(δφ) = I − δφ
i

~
Lz.

What if we then make a suession of N in�nitesimal rotations, eah of the same size, δφ, suh that:

N · δφ = φ,

where φ is a �nite rotation about the z-axis? This would be the same as applying the rotation operator to

the state N suessive times:

(

I − φ

N

i

~
Lz

)(

I − φ

N

i

~
Lz

)(

I − φ

N

i

~
Lz

)

...

(

I − φ

N

i

~
Lz

)

ψ(x, y, z).

In the limit that N → ∞,

lim
N→∞

(

I − φ

N

i

~
Lz

)N

= e−iφLz/~.

We an then write that

Uz(φ) = e−iφLz/~.

In general, the rotation matrix in total angular momentum spae that rotates one state of |j,m〉 into
another is given by

U = e−iθ(θ̂· ~J)/~,

where the angle θ is a general angle (this ould be deomposed into Euler Angles, for instane, �rst rotating

away from an axis of hoie and then rotating around the new diretion).
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Figure 7: A depition of the deay of a spin-1 partile (left) into a pair of spin-1/2 partiles (right).The

z-axis has been onveniently hosen to be the deay axis. The produt kets in the �nal state have positive

and negative heliities for partile 1 and partile 2, respetively. Remember - one we have hosen the z-axis

as our axis of quantizaton, we annot know where

~S points; we an only know that the initial state is in a

de�nite z-projetion of its spin. The above piture is quite lassial, but an aid in thinking.

9.2 Angular Distributions of Final-State Partiles

We are now ready to think about how to assemble our piees:

• We have seen how to write states of total angular momentum in terms of produt kets over the individual

partiles that ompose the total state

• We have seen the form that general rotations take, so we are in priniple equipped to take a state of

total angular momentum (�total-j�) and rotate it (and, onsequently, the partiles that ompose it)

about some axis.

• We reognize that in fully relativisti quantummehanis, we have to onsider three angular-momentum-

related quantum numbers related to internal angular momentum (�spin�): the total angular momentum

quantum number, j, the projetion along the z-axis, m, and the projetion of spin along the diretion

of motion (�heliity�), λ.

Using these piees, we an probe the angular distributions of partiles resulting from the deay of a total-j

state.

9.2.1 Example: the deay of a spin-1 partile into two spin-

1
2 partiles

Consider a spin-1 partile, at rest, that spontaneously deays to a pair of spin-1/2 partiles (Fig. 7). Let us

prepare it (produe it) suh that its spin projets along the positive z-diretion with m = 1. Let us reall
how we wrote this total-j state of spin-1 in terms of the produt kets:

|1, 1〉 = |++〉 .
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We need to take the heliity quantum number into aount, to be fully relativisti (as we learned from the

Dira Equation. We an then label states:

|j,m, λ〉

and write the above state of total-j as

|1, 1, 1〉

It is onvention to hoose, for a partile at rest, the heliity to point along the positive z-diretion - one

then an boost the partile along the z-axis and rotate its momentum vetor to ahieve any other state of

motion while preserving its heliity. The �nal state (a pair of spin-1/2 partiles) may have any of a number

of heliity quantum numbers available to them, depending on the angle of deay with respet to the z-axis

and the spin vetor of the parent. In the ase depited in Fig. 7, only one heliity state is allowed, and we

an denote it |↑↓〉(or |↓↑〉if we swapped partile 1 and 2) in the produt-ket notation. However, in general

the deay angle ould be non-zero, and all we know is the projetion of

~S on the z-axis (that is the only

de�nite thing we know about the orientation of

~S), so any of a number of heliity states are possible. We

an label them as produt kets:

|m1, λ1;m2, λ2〉

and write them down (heliity is another two-state problem - so we already know how to represent them in

ket spae:

|1〉 = |+ ↑; + ↑〉
|2〉 , |3〉 = |+ ↑; + ↓〉 , |+ ↓; + ↑〉

|4〉 = |+ ↓; + ↓〉 .

This lets us represent the �nal states with their heliity quantum numbers.

In general, if we want to desribe what happens during the transition from an initial state to a set of �nal

states, we have to do sattering theory and introdue the �S matrix,� whih tells us how the states evolve at

all times. We would then ompute an amplitude like so,

A ∝
∑

n

〈fn|S |i〉 ,

whih is related to a physial observable by squaring the amplitude:

|A|2 = A∗A.

Sine we are going to square the amplitude anyway, let's onsider A∗
. In our spei� ase, we are interested

in onsidering the deay of a partile at rest into a pair of partiles at angle θ with respet to the z-axis, and

about the y-axis at an angle φ. We an write our amplitude as

A∗
1,1 ∝ 〈1, 1|S |+, λ; +, λ′; Ω(θ, φ)〉

Taking into aount the spin projetions on the z-axis, the heliity states, and the angular orientations of

the �nal-state partiles. However, we want to determine this angular dependene; so all we need to do is

instead think about how we would rotate partiles of these heliities away from θ = φ = 0 (basially, on the

z-axis) to any other orientation. This is ahieved by applying two suessive rotations to

|+, λ; +, λ′; Ω(0, 0)〉
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that then rotate this state around the z-axis (by the Euler Angle φ) and then about the y-axis (by the Euler

Angle θ). This takes the form:

U(θ)U(φ) |+, λ; +, λ′; Ω(0, 0)〉 = |+, λ; +, λ′; Ω(φ, θ)〉 .

where we an write:

U(θ)U(φ) = U(Ω).

Our amplitude beomes:

A∗
1,1 ∝ 〈1, 1|S |+, λ; +, λ′; Ω(φ, θ)〉

= 〈1, 1|S U(Ω) |+, λ; +, λ′; Ω(0, 0)〉
=

∑

j,m

〈1, 1|S |j,m〉 〈j,m|U(Ω) |+, λ; +, λ′; Ω(0, 0)〉

= 〈1, 1|S |1, 1〉 〈1, 1|U(Ω) |+, λ; +, λ′; Ω(0, 0)〉 .

The produt-ket states have projetions of their spin suh that m = λ1 − λ2, whih will then be rotated

by the rotation matrix into the state 〈1, 1| with its de�nite Sz value and de�nite heliity. This an be

generially written as 〈j′,m′|U(θ, φ) |j, λ1 − λ2〉 , and are given by the �Wigner d-funtions,� [26℄ whih are

also provided for you in Fig. 6. These have the form:

〈j′,m′|U(Ω) |j, λ1 − λ2〉 = d(θ)jm′,m=λ1−λ2
e−i(λ1−λ2)φ.

The exponential term (and thus dependene on the orientation about the z axis) will vanish when you

ompute eah ontribution to the total amplitudeA2 =
∑

n |An|2; the other angular omponent, however,
will remain.

We have three amplitudes that ontribute to our sum:

A∗
1,1 ∝ 〈1, 1|S |1, 1, 0〉 〈1, 1| d(θ)11,1e−iφ

so that

A∗
1,1 ∝ 1

2
(1 + cos θ)e−iφ.

Then we have two others:

|1, 0〉 −→ A∗
1,0 ∝ − 1√

2
sin θ

|1,−1〉 −→ A∗
1,−1 ∝ 1

2
(1− cos θ).

If one annot distinguish in the �nal state (say, by applying an experimental appratus) the various heliity

states of the fermions, then one has to sum over the �nal-state heliities (m = 1, 0,−1). The total amplitude
will then be something like:

A2 ∝ ǫ1(1 + cos θ)2 + ǫ2 sin
2 θ + ǫ3(1− cos θ)2. (5)

We ould hoose some example oe�ients and alulated the angular dependene (amplitude vs. cos θ,
for instane). This is shown in Fig. 8. But will we see this in nature? The Stanford Large Detetor (SLD)

at the SLAC Laboratory produed Z bosons by olliding polarized eletron and positron beams. The degree

of polarization ould be used to alter the oe�ients of the spin admixture present in the spin-1 Z boson at

the time of its prodution. We see that the struture predited by the angular momentum onservation in

the deay is realized in nature.

Of ourse, the details matter. The preise form of the oe�ients and other kinemati e�ets are only

predited by onsidering the full sattering theory in relativisti quantum mehanis.
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Figure 8: GNUPlot image of the amplitude-squared vs. cos θ for an arbitrary set of oe�ients in Equation

5.
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Figure 9: Polar angle distribution for Z0
deays to e, µ and τ pairs for the 1994-5 SLD run. The asymmetries

in the 1993 data look similar but are less pronouned due to the lower polarization. Figure and aption from

Ref. [27℄.
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10 Advaned Topi: Spin and Interations

In this setion of the ourse, we'll explore the impliations for partiles (with and without spin) interating

with one another. We'll build on what we've developed so far, but we need to add some more piees to

enhane our toolkit for desribing interations.

10.1 Non-Relativisti Perturbation Theory and Interations

Consider the general problem of a free partile that omes into ontat at some point with an external

potential (e.g. experienes an �interation� via the potential) and then ontinues onward. We an denote

the initial state by labeling it i and the �nal state by labeling it f .

Consider the purely free-partile situation for a seond, we an write the Shroedinger Equation as:

H0φn = Enφn

where H0 is the free-partile Hamiltonian (

−~
2

2m ∇2) and the φn are the eigenstates of the system (a single

partile). We onsider all of this happening in some spatial volume, V , and that the eigenstates are normalized
and orthogonal:

ˆ

V

φ∗nφn d
3x = 1

ˆ

V

φ∗mφn d
3x = 0 (m 6= n).

These an be summarized in a single equation:

ˆ

V

φ∗mφn d
3x = δmn.

The goal, of ourse, is to solve Shroedinger's Equation now with the partile in the presene of a potential,

V (~x, t):

(H0 + V (~x, t))ψ = i
dψ

dt
.

If we an �nd the eigenstates of the system, inluding the potential, we should be able to write eah in the

spae-and-time separable form:

φn(~x, t) = φ(~x)e−iEnt.

Any general solution of the SWE an be written in terms of these orthogonal solutions:

ψ =
∑

n

an(t)φn(~x)e
−iEnt.

We don't know the solutions, but we an try to sort out these oe�ients, an(t). We insert the above solution

into the SWE:

i
d

dt

[

∑

n

an(t)φn(~x)e
−iEnt

]

=
∑

n

H0

[

an(t)φn(~x)e
−iEnt

]

+
∑

n

V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

.

We know that H0φn(~x) = Enφn(~x), so that:

∑

n

H0

[

an(t)φn(~x)e
−iEnt

]

=
∑

n

(En)an(t)φn(~x)e
−iEnt
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The free-partile Hamiltonian a�ets no other parts of the wave funtion, term-by-term. We an also write

the left side by applying the hain rule:

i
d

dt

[

∑

n

an(t)φn(~x)e
−iEnt

]

= i

[

∑

n

φn(~x)

(

e−iEnt
d

dt
an(t) + an(t)

(

(−iEn) e
−iEnt

)

)

]

= i

[

∑

n

φn(~x)e
−iEnt

(

d

dt
an(t)− ian(t)En

)

]

= i
∑

n

φn(~x)e
−iEnt

d

dt
an(t) +

∑

n

Enan(t)φn(~x)e−iEnt

We see that some terms anel on the left and right of the SWE, leaving:

i
∑

n

φn(~x)e
−iEnt d

dt
an(t) =

∑

n

V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

.

We want an equation for just the oe�ients, and the way we an ahieve this is to take into aount the

orthonormality of the eigenstates. Multiplying from the left by φ∗f (~x):

i
∑

n

φ∗f (~x)φn(~x)e
−iEnt

d

dt
an(t) =

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

and then integrating over the volume, leads to:

i

ˆ

V

φ∗f (~x)φn(~x)e
−iEnt

d

dt
an(t) d

3x =

ˆ

v

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

d3x

whih yields:

iδfne
−iEnt

d

dt
an(t) = ie−iEf t

d

dt
af (t) =

ˆ

v

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

d3x.

Finally, we move everything exept the time-derivative to the right-hand side of the equation and get what

we want:

daf (t)

dt
= −i

∑

n

an(t)

ˆ

V

φ∗f (~x)V (~x, t)φn(~x)e
−i(En−Ef )t d3x.

We now have an equation that relates the time-dependene of a single oe�ient, af (t), to a sum over

all other oe�ients times integrals of the probability density of an eigenstate interating with the potential

and yielding a projetion along the eigenstate φf (~x).
Let us then try to go a little further. Let us simplify the problem by imagining that, at �rst, we prepare

the free partile system in an eigenstate of the SWE. Let us hoose n = i , where i denotes the initial

eigenstate (one of many from whih we ould have hosen) in whih we prepare the system. This then fores

ai = 1 and am = 0 for m 6= i. Our equation then beomes:

daf
dt

= −i
ˆ

V

φ∗f (~x)V (~x, t)φi(~x)e
−i(Ei−Ef )t d3x.

Let us further imagine that over a period of time, T , the free-partile travels, then interats via V (~x, t), and
then exits in its �nal-state. We an onsider the ase of a �nearly free partiles� as a small �perturbation� to

the purely free-partile senario. That is, onsider a time spent in the potential that is:

• transient - the time period spent inside the potential, δt << T .
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• weak - the potential strength itself is very small in magnitude

We an then see what happens. Imagine that the potential interation ours as time t = 0, with δt << T .
The partile is sent in for the interation at time t = −T/2 and onludes its journey in its �nal state at

time t = T/2. This allows us to assume that the initial onditions essentially hold at all times, sine the

in�uene of the potential will be small. We an �nd the oe�ient at any time t by integrating the above

equation from −T/2 to an arbitary time, t , where t ≤ T/2:

an = −i
ˆ t

−T/2

ˆ

V

φ∗f (~x)V (~x, t)φi(~x)e
−i(Ei−Ef )t d3x dt.

We an identify the spae-time volume element, d4x = d3x dt. This is onvenient for later. We are spei�ally

interested in the oe�ient at the time T/2, when the interation has long-eased. This spei� value of the

oe�ient is denoted:

Tfi ≡ af (T/2) = −i
ˆ +T/2

−T/2

ˆ

V

[

φ∗f (~x)e
iEf t

]

V (~x, t)
[

φi(~x)e
−iEit

]

d3x dt.

This represents an integral over all relevant spae and time points in the problem. We an then write the

above oe�ient in the ompat format:

Tfi = −i
ˆ

[

ψ∗
f (~x, t)V (~x, t)ψi(~x, t)

]

d4x.

This is only a good approximation if af << 1, whih was assumed in the above alulations (we an hek

the orretion to this assumption later).

You an show that the above quantity, while temptingly assumed to be related to the probability for the

transition from the initial state to the �nal state, is not physially meaningful as suh. However, a slight

rede�nition of the above yields the physially meaningful quantity.

If we onsider a time-independent potential, V (~x, t) → V (~x), we an write:

Tfi = −i
[
ˆ

φ∗fV φi d
3x

] [
ˆ +∞

−∞
e−i(Ei−Ef )t dt

]

.

The time integral is just the Dira Delta Funtion:

δ(a− b) ≡ 1

2π

ˆ

eix(a−b)dx

so that

Tfi = −2πi

[
ˆ

φ∗fV φi d
3x

]

δ(Ef − Ei).

we an then de�ne:

W = lim
T→∞

|Tfi|2
T

whih is the probability per unit time of transitioning from the initial to the �nal state via this potential.

Realling that |Tfi|2 = T ∗
fiTfi , de�ning Vfi =

´

φ∗fV φi d
4x, and remembering that the square of a delta

funtion is just a delta funtion,

W = lim
T→∞

[

1

T

]
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11 The Heliity Formalism (Roberto Vega)

This part of the leture is ontributed by Prof. Roberto Vega, and based on his notes and leture.

Consider a partile, labelled α, deaying into two partiles, 1 and 2. If you know the spin of the parent,

and you know the spin of the �nal-state partiles - say, S1 = 0 and S2 = 1
2 - then already that information

lets you know about the outgoing angular distribution of partiles will look like. This is true even without

knowing exatly the Hamiltonian. You need only know the angular momentum, that it's onserved, and you

an proeed.

Generally speaking, for this ase, you get a superposition of terms like

dY 0
1 χ1/2,1/2 + cY −1

1 χ1/2,−1/2 + bY 0
0 χ1/2,1/2.

You an then determine from these funtions the possible angular distributions. This is the ommon proe-

dure.

The advantage of this proedure is that the angular momentum is de�ned in the rest frame of the parent.

However, you also know the spin states in the rest frame of the daughters. You have to shu�e between the

systems by rotation. This is tedious, however. If you want to onsider polarization e�ets, this is not a

onvenient method.

This is why we use �the heliity formalism.� It is based on the observation that the heliity operator, the

projetion of spin in the diretion of motion,

~S · p̂ = ~J · p̂,

ommutes with the momentum and the total angular momentum. That is, sine the above relation holds,

[~P , ~J · p̂] = 0 and [Ji, ~J · p̂] = 0
while

[Pi, Jj] 6= 0 and [~P 2, Ji] 6= 0.

The eigenvalue assoiated with the operator is what is meant by �heliity.� Sine we an hoose any diretion

to be the z-axis along whih we quantize angular momentum projetion, it is onvenient to hoose the

diretion of motion, p̂ = ẑ.
Thanks to ommutation, we see that we have two independent sets of basis vetors. One set an be

labeled with the eigenvalues of the momentum operator,

~P , and by the eigenvalues of the heliity operator.

These are �plane-wave heliity states�:

|p, θ, φ;λ〉 .
The other, we an label with the eigenvalues |~P |, J2

, Jz, and the heliity operator:

|j,m, |p|;λ〉 .

This is the �spherial wave heliity basis.� Also, if we onsider the �nal-state partiles from the deay example

above, eah is also desribable in its own heliity basis.

The heliity formalism is one that labels the states using either of these two basis sets. Why is this

advantageous? Beause the heliity operator is invariant under Lorentz boosts along the diretion of motion.

We an work in any frame; for instane, we an hoose to start in the enter-of-mass frame, and then

boost, and out results still desribe the physis in other frames. This formalism applies equally well to both

massive and massless partiles. Heliity is invariant for massive and massless partiles. In the other approah

- labeling by the spin and orbital angular momentum - we have to treat massless partiles speially (they

annot be at rest - we annot use the rest frame). In the Heliity Formalism, you an deal with total angular

momentum, and not worry about the details of orbital angular momentum. As a bonus, heliity amplitudes

for sattering give us a way of easily writing down the polarization e�ets in a sattering system.

What is the general idea? The idea is that we have a sattering:

α→ 1 + 2.
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Here, α has a well-de�ned J and M - the total angular momentum and its projetion in the z-diretion.

This is just a deay. We an write the amplitude for this

A = 〈~p1~p2;λ1λ2|T |JM〉,

where T = e−(i/~)Ht
is an operator that evolves the states overall times (see the earlier setion on sattering).

T is a salar,

[T, Ji] = [H, Ji] = 0,

sine T is just a series whose terms ontain powers of the Hamiltonian, and the Hamiltonian ommutes

with the angular momentum operator for rotationally invariant systems (whih is what we are onsidering

througout these notes - systems where angular momentum is onserved and whih are thus rotationally

invariant). We an then expand the above amplitude in any other basis we like. For instane, we an write

it in the basis of total-j states:

A =
∑

j′,m′

〈~p1~p2;λ1λ2|j′m′〉〈j′m′|T |JM〉.

Sine T is a salar, we an write this matrix element using the Wigner-Ekhart Theorem:

〈j′m′|T |JM〉 = 〈j′m′|00JM〉〈|~p|, j, λ|T |J〉 = δMm′,Jj′〈|~p|, j, λ|T |J〉 ≡ Tλ1λ2
.

whih has just a Clebsh-Gordon Coe�ient relating the two bases to one another. This Clebsh-Gordon

Coe�ient in this spei� ase is just a delta funtion - it vanishes if m′ 6= M and j′ 6= J . It is also

independent of the index, m. We an label it any way we like. The other term:

〈~p1~p2;λ1λ2|j′m′〉 ≡ DJ
Mλ(θ, φ).

So in the end, we just have:

A = DJ
Mλ(θ, φ)Tλ1λ2

.

where λ = λ1 − λ2.
The hard work of determining the angular dependene of the �nal state is let to determining these

�D-matries,� whih were partially introdued earlier and now will be de�ned more arefully.

11.1 Massless and Massive Partiles

For a massive partile,

λ = s, s− 1, .....,−s.

The heliity states for a omplete basis:

|~p, λ〉 .

For a massless partile, you an still de�ne the heliity basis. But there is a di�erene. Here,

λ = ±s.

The nature of spin for a massless partile is quite di�erent for a massless partile. Massive partiles have

spin due to the fat that rotations our in the group SU(2). But for massless partiles, rotations involve

three parameters - the three Euler Angles, if you like.

Remember that boosts along the diretion of motion won't hange heliity. Boosts in any other diretion,

of ourse, will hange the heliity.
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11.2 Rotations - Revisited

The rotation operator that ats on kets is unitary, and in general depends on three parameters:

U(Rn̂(ϕ)) = e−iϕn̂· ~J

in natural units. This is a rotation by ϕ about

~J . The three parameters are (1) the rotation angle, and (2,3)
the two parameters that de�ne n̂ - the polar and azimuthal angles. We an rotate a state like so:

U(R) |ψ〉 = |ψ′〉 .

These matries at on other operators via:

UAU † = A′.

For example, for spin-1/2:

~J =
1

2
~σ,

we an rewrite the exponential funtion in terms of sines and osines and �nd:

U(Rn̂(ϕ)) = cos(ϕ/2)− i~σ · n̂ sin(ϕ/2).

The properties of the dot produt in the above are:

(n̂ · ~σ)2 = n̂2 = 1

(n̂ · ~σ)3 = n̂ · ~σ.

For spin-1:

U = 1 + (n̂ · ~J)2(cosϕ− 1)− i(n̂ · ~J) sinϕ.

We know that:

σz |1/2, 1/2〉 = + |1/2, 1/2〉

whih an be written:

ẑ · ~σ |1/2, σ〉 = σ |1/2, σ〉 .

We an then rotate:

Uẑ · ~σU †U |1/2, σ〉 = σU |1/2, σ〉

and one an then write this out in terms of rotation angles and show that it does, in fat, behave exatly as

you'd expet a rotation operator to behave.

Let's look at this using Euler Angles - �rst rotate about a seleted axis, then away from the axis (around

another one), and �nally again about the original axis. In quantum mehanis, we an write this in a simple

way:

U(α, β, γ) = e−iαJze−iβJye−iγJz .

It's amazing that we an de�ne an arbitrary rotation to a new point using these three simple rotations about

just two axes - but it does work.

If S is a rotation, and I take another rotation, R, and alulate this:

SR(~ψ)S−1 = R(S ~ψ).
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In other words, the rotation on the left is the same as just rotating the vetor,

~ψ, �rst by the matrix S and

then de�ning R about the new axis. This an be proven, but we will merely employ this theorem.

We an then write:

U(~ψ · ~J)NU † = (U(~ψ · ~J)U †)N

= ψiUζJiU
†
ζ = ψiS

−1
ij Jj = ψ′

iJi.

11.3 The Wigner D-Matries

The Wigner D-matries an now merely be written in terms of these rotations. We an de�ne these matries

as mentioned earlier:

D
(j)
m′m(α, β, γ) = 〈j′m′|U(α, β, γ) |jm〉 .

This works beause J2
is a salar (we are dealing with rotationally invariant systems!); that is:

UJ2U † = J2.

The above is not true for only Jz . While total angular momentum is onserved, omponents an be hanged

under a rotation. We an then proeed:

D
(j)
mm′(α, β, γ) = e−iαm′

e−iγm 〈j′m′| e−iβJy |jm〉 .

where:

djm′m ≡ 〈j′m′| e−iβJy |jm〉 .

Note that:

〈j′m′| e−iπJy |jm〉 = (−1)j−mδm,−m′ .

We will use this (though you an prove it from the rotation operator, if you hoose).

For the plane-wave heliity states, we an write:

|p, λ〉 .

We will de�ne the standard ket as:

|pzλ〉

with all momentum along the z-axis. We an then do everything relative to this standard ket. For a massive

partile, the standard ket is |0λ〉−at rest, with the spin pointing in the z-diretion. For a massless partile,

our onvention will be to write the standard ket as |κzλ〉, where κ2 = 0. From these standard kets, I

an generate ANY state of momentum by applying a Lorentz Transformation for the massive ase; for the

massless ase, I have to onsider what happens to the partile under a parity transformation (sine I an

never �boost ahead� of the partile and thus reverse its diretion of motion).

For the standard ket, we an start with writing all omponents of momentum expliitly:

|p, 0, 0;λ〉 .

I an then rotate this momentum state in any diretion to get the general problem of a partile with

momentum ~p = (px, py, pz), where the momentum may not lie entirely along one seleted axis.
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Let's rotate. Not that rotating about the z-diretion does nothing to the state. We have to hoose a

�phase onvention� for how to handle that rotation, sine without a onvention its e�et is unde�ned. We

hoose the �Jaob-Wik Phase Convention� where we hoose the phase angle ϕ = φ. Rotating the standard
ket:

U(φ, θ, φ) |p, 0, 0;λ〉 = |p, θ, ϕ;λ〉 ,

we an get a hint of how this is, in the end, merely doing to be related to the D-funtions. We an write our

standard ket in terms of the basis states of total-j:

|p, 0, 0;λ〉 =
∑

j,m

Cm
j |p, j,m;λ〉 .

The λ that appears here is th esame on both sides. The only term that survives in the sum is then the one

with m = λ:

|p, 0, 0;λ〉 =
∑

j

Cj |p, j, λ;λ〉

|p, θ, φ;λ〉 =
∑

j

CjU(φ, θ, φ) |p, j, λ;λ〉

=
∑

j

Cj

∑

j′m′

|p, j; ,m′;λ〉 〈p, j′,m′;λ|U(φ, θ, φ) |p, j,m;λ〉

=
∑

j

Cj

∑

j′m′

|p, j; ,m′;λ〉D(j)
m′λ(φ, θ, φ).

We annot hange the magnitude of

~J in these transformations, so the only terms that survive are those

where j′ = j . Also, it must be that m = m′
- otherwise, the inner produt vanishes. Thus:

|p, θ, φ;λ〉 =
∑

j,m

Cj |p, j,m;λ〉D(j)
mλ(φ, θ, φ).

If I then take the inner produt:

〈p, j′,m′;λ|p, θ, φ, λ〉 =
∑

j,m

CjD
(j)
mλ(φ, θ, φ)〈p, j′,m′;λ|p, j,m;λ〉 = CjD

(j)
mλ(φ, θ, φ).

It an be shown that these D-funtions, for integer values of j = ℓ , are proportional to the spherial

harmonis, Y ℓ
m.

If we then require that:

〈p, θ, φ, λ|p, θ, φ, λ〉 = 1,

it an be shown that:

Cj =

√

2j + 1

4π
.

This allows us to write down the angular distributions for a deay like α → 1 + 2 . In that ase, we just

have two partiles, bak-to-bak in the enter-of-mass frame of the parent. The net heliity of the system is

λ = λ1 − λ2. One only still needs two angles, θ and φ.

11.4 Heliity States under Transformations

We now want to explore what happens to heliity states under parity and re�etion transforms. This is useful;

one we know these relations, we an simply emply them to write states that relate to suh transformations.
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