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1 Resour
es

The sour
es for this le
ture series are:

• Halzen, F. and Martin, A. �Quarks and Leptons: An Introdu
tory Course in Modern Parti
le Physi
s�

• M
Mahon, D. �Quantum Me
hani
s Demysti�ed (a self-tea
hing guide)� (Hey! I am an experimental-

ist...)

• Merzba
her, E. �Quantum Me
hani
s (3rd Edition)�

• Sakurai, J. J. �Modern Quantum Me
hani
s�

• Shankar, R. �Basi
 Training in Mathemati
s: A Fitness Program for S
ien
e Students�

• Shankar, R. �Prin
iples of Quantum Me
hani
s�

• Strang, G. �Linear Algebra and its Appli
ations�

• Tomonaga, S. �The Story of Spin�

• Wu Ki Tung, �Group Theory in Physi
s�

You should also mine the bibliography at the end of these le
ture notes for referen
es to histori
al physi
s

publi
ations that were part of the long development of quantum me
hani
s and an understanding of spin

angular momentum.
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Figure 1: The Zeeman E�e
t, visible in a solar spe
tral line (left) that splits in the presen
e of a strong

magneti
 �eld gradient (right). Look at the bowed portion of the spe
tral line at the elevations where the

sunspot regon is lo
ated. Sunspots are regions of high solar magneti
 �eld gradient. This photo was taken

in 1919, and is from Ref. [4℄.

2 A very brief and over-simpli�ed history of spin angular momen-

tum

The development of quantum me
hani
s happened in parallel with a vast array of experimental observations

regarding atoms. These observations were made in detail through the 19th 
entury and into the early 20th


entury. It's useful to see how the model of the atom 
hanged in response to experimental observations

(data).

• In 1897, Zeeman reports that atomi
 spe
tral emissions will multiply (into doubles or triples) in the

presen
e of a strong magneti
 �eld (�The Zeeman E�e
t�) [1, 2, 3℄. The Zeeman E�e
t is illustrated in

an astrophysi
s 
ontext in Fig. 1.

• The existen
e of atoms was �nally and �rmly established by Albert Einstein's 1905 paper regarding

Brownian Motion[5℄. This paper explained, using the atomi
 hypothesis (that matter is 
omposed of

fundamental building blo
ks), the observed phenomenon of Brownian Motion (the jittering of parti
les

in a hot liquid), whi
h other 
ompeting hypotheses for the nature of elements and 
ompounds 
ould

not explain.

• Experiments on the ele
tron, perhaps the most famous being those of J. J. Thompson[6, 7℄, established

that the ele
tron was not a wave nor an atom, but rather an independent parti
le (1897). In order

to in
lude the ele
tron into the atomi
 model, Thompson proposed that the atom was 
omposed of

a 
ontinuous distribution of ele
trons and some positive 
harge elements so that their total ele
tri



harge was zero (neutral). This he proposed in 1904 (Fig. 2a). This exa
t pi
ture of the distribution

(sometimes des
ribed as the �plum pudding model�) 
ontinued to shift absent experimental eviden
e

for it or against it.

• In 1911, Ernest Rutherford performed his famous s
attering experiments [11℄and demonstrated that

the atom was 
omposed of a tightly-pa
ked 
ore nu
leus of positive 
harge. The pi
ture was then

that the nu
leus was at the 
enter and a 
loud of ele
trons surrounded the nu
leus, forming the atom.

The earlier �plum pudding�-style models were abandoned in favor of this pi
ture. The new model is a

�planetary model of the atom� - the ele
trons orbit a 
entral nu
leus (Fig. 2b). This model has a �aw.

One 
ould 
al
ulate that single ele
trons in su
h orbits would radiate energy, eventually leading to the


ollapse of their orbits and the dissolving of atoms. All atoms should be unstable.
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(a) The �Plum Pudding� Model of the Atom. (b) The Rutherford Model of the atom

(
) The Bohr-Rutherford Model of the atom

Figure 2: Cartoon representations of various ad ho
 models of the atom, determined from experiments


ondu
ted from 1897-1922. The �gures are from Refs. [8, 9, 10℄.
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• The earlier observation (in the late 19th 
entury) that the energy emitted from ele
tri
 dis
harges of

atoms was dis
rete and not 
ontinuous implied, in the Planetary Model, that ele
trons were for
ed

into only very spe
i�
 orbits, and 
ould not o

upy intermediate orbits. The problem of radiation, and

these earlier observations of spe
tra interpreted in the Planetary Model, led to the Bohr-Rutherford

Model of the Atom in 1913[12, 13, 14, 15, 16℄ (Fig. 2
). This was the next logi
al step beyond the

planetary model also 
onsistent with the data (la
k of observation of general atomi
 instability and

dis
rete atomi
 emission spe
tra). Ele
trons surround the nu
leus, but only in well-de�ned orbits and

not anywhere in-between.

Atoms in the Bohr Model then have dis
rete orbits, leading to dis
rete energies emitted during transitions

between the orbits:

∆E = E2 − E1 = hf

where h is Plan
k's Constant (h = 6.626× 10−34 J · s) and f is the frequen
y of the emitted light. Dis
rete

orbits have spe
i�
 orbital angular momentum asso
iated with them, and that, too, will be dis
rete:

L = n~

where n is the �Prin
iple Quantum Number� assigning the ele
tron to a spe
i�
 orbital level. This notation

was introdu
ed by Bohr.

Arnold Sommerfeld and Peter Debye independently proposed an enhan
ement of the Bohr Model[17℄

and were the �rst to formally propose the dis
retization of a 
omponent of total orbital angular momentum

(�spa
e quantization�). They proposed that orbits 
ould deviate from 
ir
ular (as was the assumption of the

Bohr Model), stret
hing along an axis as ellipses. This required introdu
ing not just a prin
iple quantum

number, n, to des
ribe the orbital level, but also a new quantum number, k, to des
ribe the shape of the orbit
(deviation from 
ir
ular). Sommerfeld proposed that k 
an only take positive integer values (preserving the

dis
retization of orbital angular momentum) but the stret
h of the orbit 
ould vary; however, the stret
h 
ould

also only vary in a dis
rete manner. This was des
ribed by a quantum number m, su
h that −k ≤ m ≤ k.
Sommerfeld thus predi
ted that orbital angular momentum should be quantized along a spe
i�
 axis, a

predi
tion that was tested later by the Stern-Gerla
h Experiment (1922) [18℄ and veri�ed (for a review of

the Stern-Gerla
h Experiment, 
.f. Ref. [19℄). Spa
e quantization failed to illuminate the Zeeman E�e
t,

however.

The Stern-Gerla
h Experiment, demonstrated spa
e quantization but it took time to understand exa
tly

the results. It wasn't until the postulation of ele
tron �spin angular momentum� that the spe
i�
 reasons for

the observed e�e
t 
ould be 
ompletely understood. This wasn't until 1927. The 
on
ept of a two-valued

internal degree of freedom present in the ele
tron - what we 
all �spin� - was thanks to Wolfgang Pauli in

1924.

The early-mid 1920s mark the end of the �old quantum me
hani
s,� whi
h e�e
tively was a series of ad

ho
 models built in response to experimental observations, and the maturation of the development of formal

quantum me
hani
s based on various prin
iples, in
luding energy 
onservation and the observed wave nature

of matter and light. Formal quantum me
hani
s allowed for an exa
t mathemati
al model of the atom to be

built, and that model reprodu
ed exa
tly many of the earlier observed atomi
 phenomena while predi
ting

new ones. Spe
ial relativity was in
orporated into formal quantum me
hani
s by Paul Dira
 in 1928 (
.f.

[20℄).

In these le
tures, I will walk a narrow path through the subje
t of spin. We will roughly follow this

traje
tory:

• A review of the most salient and basi
 mathemati
al tools needed to make progress

• The appli
ation of the tools to orbital angular momentum as a preparation and refresher on the subje
t

• The introdu
tion, by hand, of spin angular momentum into non-relativisti
 quantum me
hani
s

• The handling of simple multi-parti
le systems and the addition of individual angular momentum states

to obtain a single, total angular momentum state
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• Spin in relativisti
 quantum me
hani
s

• Spin and the identi�
ation of new parti
les, with a fo
us on the Higgs Boson and the theoreti
al and

experimental realities of measuring its spin quantum number

3 Basi
 Mathemati
al Tools

3.1 Basi
 Information About Complex Numbers

Consider a 
omplex number, z, whi
h 
an be written as the sum of real and imaginary parts:

z = R(z) + i I(z) = x+ iy.

The 
omplex 
onjugate of this number 
an be written as:

z∗ = x− iy

A few interesting relationships 
an be immediately derived:

R(z) =
z + z∗

2

I(z) =
z − z∗

2i
.

Using this, we 
an also write the magnitude of the 
omplex number (whi
h must be a real number):

|z|2 ≡ zz∗

= R(z)2 + I(z)2

≥ I(z)2 =

(

z − z∗

2i

)2

.

3.2 Ve
tors, Ve
tor Spa
es, and the Dira
 Notation

3.2.1 Crut
h: ve
tors in spa
e and time

When we learn ve
tors, we learn about spa
e and then spa
e-time ve
tors:

~x = (x, y, z)

X = (x, y, z, ct) = (~x, ct).

3.2.2 Generalization: ve
tors in the Dira
 Notation

However, ve
tors are not restri
ted to only being 
olumns or rows of numbers. They 
an be 
olle
tions of

any type of mathemati
al obje
t - fun
tions, matri
es, et
. In order to generalize the 
on
ept of a ve
tor,

we introdu
e the Dira
 Notation. A 
olumn-ve
tor is referred to as a ket, and is denoted:

|x〉 =





x
y
z





while a row-ve
tor is referred to as a bra (bra-ket . . . get it? I know. Terrible. It annoyed me when I �rst

learned this notation.) and is denoted:

〈x| =
[

x y z
]

.
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I have above used real numbers in the 
onstru
tion of a ve
tor; however, we should not limit ourselves to

real numbers, but generalize to 
omplex numbers. A set of ve
tors is said to be 
onstru
ted over the ��eld of

real numbers� if all elements of the ve
tors in the set are real-valued; likewise, a set is 
onstru
ted over the

��eld of imaginary� or the ��eld of 
omplex� numbers if elements of the ve
tors in the set are 
onstru
ted

from imaginary or 
omplex numbers, respe
tively.

It is important to note that the most general form of the row-ve
tor is:

〈x| =
[

x∗ y∗ z∗
]

=





x∗

y∗

z∗





T

= (|x〉)∗T .

That is, the bra is simply the transpose of the 
omplex-
onjugate of the ket.

3.2.3 Ve
tor Spa
es

A Ve
tor Spa
e,V, is de�ned a

ording to these properties:

• There is a de�nite rule for forming the sum of two ve
tors, denoted |V 〉+ |W 〉.

• There is a de�nite rule for multipli
ation by s
alars a,b,... denoted a |V 〉with the following features:

� The result of these operations (addition, and multipli
ation by s
alars) results in another ve
tor

in the same spa
e, a feature 
alled �
losure�: |V 〉+ |W 〉 ∈ V.

� S
alar multipli
ation is distributive: (a+ b) |V 〉 = a |V 〉+ b |V 〉.
� S
alar multipli
ation is asso
iative: a (b |V 〉) = (ab) |V 〉
� Addition is 
ommutative (independent of the order of addition): |V 〉+ |W 〉 = |W 〉+ |V 〉.
� Addition is asso
iative: (|V 〉+ |W 〉) + |Z〉 = |V 〉+ (|W 〉+ |Z〉).
� There exists a null ve
tor obeying: |V 〉+ |0〉 = |V 〉.
� For every ve
tor there exists an inverse under addition, su
h that: |V 〉+ |−V 〉 = |0〉.

The s
alars involved above are 
alled the �eld over whi
h the ve
tor spa
e is de�ned, as mentioned earlier.

As Shankar says in his text on quantum me
hani
s, it's fairly easy to remember all of these rules... �do what


omes naturally.�

We will deal only with linear ve
tor spa
es - that is, those where any ve
tor in the spa
e 
an be written

as a simple linear sum of other ve
tors in the spa
e:

|W 〉 =
n
∑

i=1

ai |Vi〉 .

3.2.4 Linear Independen
e and Basis Ve
tors

Here, we 
an de�ne an important feature of some subset of ve
tors in the spa
e. Consider this sum:

n
∑

i=1

ai |Vi〉 = |0〉

A set of ve
tors, |Vi〉, is said to be linearly independent if and only if the above sum is a
hieved by setting

all ai = 0. That is, the set is linearly indepenent if there is no 
ombination of multipli
ative s
alars that

leads to a null sum, other than when the s
alars are themselves null.

A set of linearly independent ve
tors whose sum 
an be used to obtain any other ve
tor in the spa
e is

referred to as the basis of the ve
tor spa
e.
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3.2.5 The (Inner) S
alar Produ
t

Consider a ve
tor |ψ〉. The s
alar produ
t is that produ
t whi
h returns a number in the �eld on whi
h the

ve
tor spa
e is de�ned. When the s
alar produ
t is 
omputed between a ve
tor and itself, we refer to this

as the �magnitude� of the ve
tor.

The general s
alar produ
t is 
alled the �inner produ
t� and is denoted simply:

〈W |V 〉 ∈ R

The magnitude (length) of a ve
tor is then given by:

|V |2 = 〈V |V 〉
|V | =

√

〈V |V 〉.

We demand that this produ
t obey the following axioms:

• Skew-symmetry: 〈V |W 〉 = 〈W |V 〉∗

• Positive semide�niteness: 〈V |V 〉 ≥ 0 and is exa
tly 0 i� |V 〉 = |0〉.

• Linearity in ket: 〈V | (a |W 〉+ b |Z〉) = 〈V |(aW + bZ〉 = a〈V |W 〉+ b〈V |Z〉.

Su
h a ve
tor spa
e with this produ
t de�ned is 
alled an inner produ
t spa
e.

• Two ve
tors are orthogonal if their inner produ
t vanishes

• |V | is referred to as the �norm� or �length� of the ve
tor, |V 〉.

• A set of basis ve
tors all of unit norm is referred to as an �orthonormal basis.�

3.2.6 Expansion of ve
tors in an orthonormal basis

If we have identi�ed a set of orthonormal basis ve
tors, |i〉, any ve
tor in the spa
e 
an be written as:

|V 〉 =
n
∑

i=1

vi |i〉 .

To �nd the jth 
omponent of this ve
tor, we 
ompute:

〈j|V 〉 =

n
∑

i=1

vi〈j|i〉

=

n
∑

i=1

viδij

where δij is the Krone
ker Delta whi
h satis�es δii = 1 and δij = 0 for i 6= j. This merely yields:

〈j|V 〉 = vj .

Using this result, we 
an write the ve
tor as an expansion in the basis ve
tors as follows:

|V 〉 =
n
∑

i=1

|i〉 〈i|V 〉.

In other words, a general ve
tor may be written as the sum of basis ve
tors, where ea
h basis ve
tor is unit

length and multiplied by a 
oe�
ient given by 〈i|V 〉.
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3.2.7 Finding an Orthonormal Basis - the Gram-S
hmidt Theorem

We are often interested in �nding the orthonormal basis ve
tors of a ve
tor spa
e. This 
an be done using

the Gram-S
hmidt pro
edure. Given a set of ve
tors that de�ne a basis set (they must only be non-parallel),

we 
an obtain an orthonormal basis set as follows:

1. Take one of the ve
tors, and merely res
ale it by its own length so it be
omes a unit ve
tor. This yields

the �rst normal basis ve
tor.

2. Subtra
t from the se
ond ve
tor its proje
tion along the �rst, leaving behind only the part perpendi
ular

to the �rst. Res
ale this pie
e by its own length, yielding a se
ond normal ve
tor orthogonal to the

�rst.

3. Repeat this pro
edure; for ea
h additional ve
tor in the original basis, subtra
t from it the proje
tions

of its length along the other orthonormal ve
tors, and res
ale the result by its length.

Writing out the steps in Dira
 Notation:

1. The �rst unit-length ve
tor, |1〉, is obtained from one of your basis ve
tors, |I〉, as follows:

|1〉 = |I〉
√

〈I|I〉
.

2. The se
ond unit-length ve
tor, is obtained by �rst doing this:

|2′〉 = |II〉 − |1〉 〈1|II〉

and then �nally by:

|2〉 = |2′〉
√

〈2′|2′〉
.

3. The third is obtained via:

|3′〉 = |III〉 − |1〉 〈1|III〉 − |2〉 〈2|III〉

followed by

|3〉 = |3′〉
√

〈3′|3′〉
.

4. Rinse and repeat...

3.2.8 The S
hwartz Inequality

This mathemati
al statement - the S
hwartz Inequality - is essential in formulating a generi
 version of the

Heisenberg Un
ertainty Prin
iple. It states that:

|〈V |W 〉| ≤ |V ||W |.

You 
an go and prove it, if you like; what you have learned from the earlier parts of the le
ture should allow

you to demonstrate this. (HINT: you need to employ the axiom of positive semi-de�niteness, 〈Z|Z〉 ≥ 0.)
When two ve
tors are orthogonal, their inner produ
t vanishes and this inequality is maximally true (0

is the smallest, positive, real number you 
an obtain from this produ
t!). When two ve
tors are exa
tly

parallel, then this is an exa
t equality. Non-parallel, non-orthogonal ve
tors lie in between.
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✬

✫

✩

✪

In-Class Exer
ise: Pra
ti
e with Ve
tors in a Matrix Representation

Consider the following ve
tors in a matrix representation:

|I〉 =
[

1
5

]

, |II〉 =
[

7
0

]

1. Compute the 
omplex-
onjugate transposes of these ve
tors (the bras that 
orrespond to these kets).

This is referred to as the adjoint of the ve
tor.

2. Cal
ulate the length of ea
h of these ve
tors.

3. Demonstrate that these ve
tors are non-parallel.

4. Using the Gram-S
hmidt Theorem, 
reate from these ve
tors an orthonormal basis ve
tor set.

3.3 Linear Operators

An operator is any mathemati
al obje
t that a
ts on a ve
tor in the spa
e, V, and returns another ve
tor in

the spa
e:

A |V 〉 = |W 〉

or

〈W |A = |Z〉

In the matrix representation, this would be represented by n× n matri
es if the kets (bras) are represented

by n× 1 
olumn matri
es (1× n row matri
es).

We are 
on
erned with linear operators that obey these rules:

Aα |V 〉 = αA |V 〉
A (α |V 〉+ β |W 〉) = αA |V 〉+ βA |W 〉

〈V |αA = 〈V |Aα
(〈V |α+ 〈W |β)A = α 〈V |A+ β 〈W |A

The simplest operator is the identity operator, whi
h leaves the ve
tor alone:

I |V 〉 = |V 〉 .

It satis�es this behavior for all kets and all bras.

3.3.1 Properties of Linear Operators

An operator, A, has an inverse, A−1
, if the following equation is satis�ed:

AA−1 = I.

In general, the inverse is found by:

A−1 =
AT

C

det(A)

where AT
C is the 
o-fa
tor matrix and det(A) is the determinant. It is good to here 
onsult a devoted

textbook on linear algebra.

A matrix is Unitary if

A∗TA ≡ A†A = I.

11



The operation of the 
onjugate transpose (A∗T
) is known as determining the adjoint matrix, A†

. In this very

spe
i�
 
ase, the inverse of the operator is its adjoint.

A matrix is Hermitian if it is its own self-adjoint; that is, if A = A†
. As a result of this, the diagonal

elements of a Hermitian matrix MUST be real numbers and thus det(A) is a real number.
A matrix, A, is positive-de�nite if

R(〈x|A |x〉) > 0 for all |x〉 , xi ∈ C

(the real part of 
omplex number that results from determining the proje
tion of A |x〉 on the original |x〉 is
positive, for all ve
tors formed on the �eld of 
omplex numbers, xi). For a Hermitian Matrix, the ne
essary

(but not su�
ient) 
onditions for being positive-de�nite are:

• aii > 0 for all i

• aii + ajj > 2|R[aij ]| for i 6= j

• The element with the largest modulus must lie on the main diagonal

• det(A) > 0

3.3.2 Matrix Elements of Linear Operators

The a
tion of a linear operator 
an be fully spe
i�ed by its a
tions on the basis ve
tors of a ve
tor spa
e:

A |i〉 = |i′〉 .

We 
an then write the a
tion of the operator on any ve
tor in the spa
e:

A |V 〉 = A

n
∑

i=1

vi |i〉 =
n
∑

i=1

viA |i〉 =
n
∑

i=1

vi |i′〉 .

If we then take the inner produ
t of this formula with another basis ve
tor, |j〉,

〈j|i′〉 = 〈j|A |i〉 ≡ Aij

and we say that this is the i,j element of the operator in the matrix representation (the �matrix elements�).

The 
omponents of a ve
tor |V ′〉 
an then be expressed:

v′i = 〈i|V ′〉 = 〈i|A|V 〉 = 〈i|A





n
∑

j=1

vj |j〉





=

n
∑

j=1

vj〈i|A|j〉

=

n
∑

j=1

Aijvj .

We 
an then imagine s
hemati
ally how to determine the matrix elements of the operator from the basis

ve
tors:

















v′1
v′2
.
.
.
v′n

















=

















〈1|A|1〉 〈1|A|2〉 . . . 〈1|A|n〉
〈2|A|1〉

.

.

.
〈n|A|1〉 〈n|A|n〉

































v1
v2
.
.
.
vn

















.
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Figure 3: A 3-D Cartesian Coordinate system. This will help you to visualize rotations of the axes about

the x-axis. From Ref. [21℄.

✬

✫

✩

✪

In-Class Exer
ise: The Rotation Operator, R

Consider an operator that exe
utes rotations by 90◦(π/2 radians) around the unit ve
tor,

~i, in a Cartesian

Coordinate System (Fig. 3) where the x-dire
tion is denoted by

~i, the y-dire
tion by

~j, and the z-dire
tion

by

~k. The a
tions of the rotation operator are given as follows on the orthonormal basis ve
tors:

R(
1

2
π~i) |i〉 = |i〉

R(
1

2
π~i) |j〉 = |k〉

R(
1

2
π~i) |k〉 = − |j〉

Determine the matrix elements of this rotation operator.

3.3.3 Rotation and Commutation

The 
on
ept of a rotation operator, one that 
hanges basis ve
tors into one another, is introdu
ed in the

in-
lass exer
ise above. In general, we are interested in understanding whether or not operators 
ommute

with one another - that is, whether or not the result of two operators a
ting on a basis ve
tor depends on

the order in whi
h they are applied.

Consider the above rotation operator, and its equivalent for rotations about the y-axis:

R(
1

2
π~j) |i〉 = − |k〉

R(
1

2
π~j) |j〉 = |j〉

iR(
1

2
π~j) |k〉 = |i〉

Perform �rst a rotation of the y-axis around the x-axis, then rotate the result around the y-axis:

R(
1

2
π~j)R(

1

2
π~i) |j〉 = R(

1

2
π~j) |k〉

13



= |i〉 .

Compare that to �rst rotating the y-axis around the y-axis, then rotating the result around the x-axis:

R(
1

2
π~i)R(

1

2
π~j) |j〉 = R(

1

2
π~i) |j〉

= |k〉 .

We see that we DO NOT GET THE SAME RESULT. The result is dependent on the order of operator

appli
ation to the original state. This then let's us say that:

R(
1

2
π~i)R(

1

2
π~j) 6= R(

1

2
π~j)R(

1

2
π~i)

or, similarly, that

R(
1

2
π~i)R(

1

2
π~j)−R(

1

2
π~j)R(

1

2
π~i) 6= 0

whi
h is to say that these operators do not 
ommute with one another. The 
ommutation relation is written

as:

[R(
1

2
π~i), R(

1

2
π~j)] ≡ R(

1

2
π~i)R(

1

2
π~j)−R(

1

2
π~j)R(

1

2
π~i) 6= 0.

3.3.4 Eigenvalues and Eigenve
tors

In general, an operator's a
tion on a ve
tor is some very 
omplex return of rotation and other e�e
ts.

However, there are a few privileged ve
tors that, when a
ted upon by an operator, are merely s
aled by a

number. These are 
alled eigenve
tors and the s
aling fa
tors are 
alled eigenve
tors.

The importan
e of this parti
ular behavior 
annot be understated, though it seems like a very simple

thing at �rst. In equation form:

A |V 〉 = a |V 〉 .

We 
an write this in a suggestive equation form:

(A− aI) |V 〉 = |0〉

and then we see that the eigenve
tors are given by:

|V 〉 = (A− aI)−1 |0〉 .

There is a trivial solution . . . |V 〉 = |0〉. We're not interested in that. We are interested instead in the

other 
ase - where we 
onsider the properties of (A− aI)−1
. The only way for a general matrix of this form

to satisfy the above equation is if the determinant of the matrix vanishes, sin
e:

(A− aI)−1 =
(A− aI)TC
det(A− aI)

where C refers to the �
o-fa
tor matrix� of the original matrix. Consult a textbook on linear algebra for a

deeper dis
ussion of this. We only need one feature from the above equation: the only way for the eigenve
tor

equation to be satis�ed is if the determinant vanishes, sin
e the 
ofa
tor matrix will be �nite if the original

matrix is �nite. So we know that the eigenve
tor equation imposes:

det(A− aI) = 0.

14



The tri
k is �nding these ve
tors. For instan
e, 
onsider the two-dimensional rotation matrix that rotates

x→ y and y → −x:
R2 =

(

0 1
−1 0

)

.

The eigenvalue equation is:

(R2 −mI) |V 〉 = |0〉

From this, we know that:

det(R2 −mI) = 0

det

(

0−m 1
−1 0−m

)

= 0

(0−m)2 + 12 = 0

m2 + 1 = 0

m = ±i.

We now have the eigenvalues. To �nd the eigenve
tors:

R2 |V 〉 = +i |V 〉
R2 |W 〉 = −i |W 〉

Considering the �rst equation:

R2 |V 〉 =

(

0 1
−1 0

)(

v1
v2

)

= +i

(

v1
v2

)

v2
−iv1 =

iv1
iv2

We get a set of equations from whi
h we 
an solve for the 
omponents - but many possible numbers will

work here. What do we 
hoose? Well, we also learn from the eigenvalue equation the following useful tidbit:

bA |V 〉 = ba |V 〉 = a(b |V 〉) = a(A |V 〉)

and any ve
tor that is an eigenve
tor, when s
aled, is ALSO an eigenve
tor. We 
an pi
k any ve
tor we like

that satis�es the above 
onstraint equation, so let's 
hoose a unit ve
tor:

|V 〉 = 1√
2

(

1
i

)

.

The se
ond eigenve
tor is then given by:

R2 |W 〉 = −i |W 〉
(

0 1
−1 0

)(

w1

w2

)

= −i
(

w1

w2

)

w2

−w1
=

−iw1

−iw2

We 
an then write down a unit ve
tor that satis�es these 
onstraints:

|W 〉 = 1√
2

(

1
−i

)

.
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3.3.5 The Diagonal Form of a Matrix

The eigenvalue equation immediately let's us re
ognize the solution to a spe
i�
 problem - what is the

matrix, S, that transforms A su
h that the resulting matrix is entirely diagonal (only elements on the main

diagonal)? This is represented by the equation:

S−1AS = Λ

This is satis�ed by 
onstru
ting the matrix S from the eigenve
tors, where ea
h 
olumn is an eigenve
tor of

A. If that is done, then we see that:

AS = A
(

|V1〉 . . . |Vn〉
)

=
(

a1 |V1〉 . . . an |Vn〉
)

=
(

|V1〉 . . . |Vn〉
)













a1
.
.
.
an













= SΛ

and therefore:

S−1(AS) = S−1(SΛ) = Λ

Let us 
onsider two operators, A and B, whi
h are both diagonalizable. If they 
ommute, they will

share a 
ommon set of eigenve
tors that represent a linearly independent basis in the ve
tor spa
e. This is a

powerful result. Should two operators be identi�ed that have eigenve
tors and 
ommute, we know that they

possess a 
ommon set of eigenve
tors that simultaneously diagonalize both operators.

To see this, let us 
onsider:

AB = BA

so that

[A,B] = 0.

Let us assume that A and B have a matrix, S, that simultaneously diagnolizes both. Keeping in mind that

diagonal matri
es, even de�ned over the �eld of 
omplex numbers, always 
ommute:

AB = SΛ1S
−1SΛ2S

−1 = SΛ1Λ2S
−1

BA = SΛ2S
−1SΛ1S

−1 = SΛ2Λ1S
−1

Sin
e diagonal matri
es always 
ommute, we see that Λ2Λ1 = Λ1Λ2 and thus AB = BA.
It is matri
es that DON'T 
ommute that su�er from Heisenberg's Un
ertainty Prin
iple, as we will see

in the 
lose of this se
tion.

3.3.6 The Expe
tation Value and the Varian
e

The expe
tation value of an operator, A, applied to a ve
tor, |V 〉, is a number that represents the most likely
value one would obtain by measuring the quantity represented by the operator. It is written as:

〈A〉 = 〈V |A |V 〉 .

For a Hermitian operator, this is a real-valued number. Sin
e it's a number, when it appears in a 
al
ulation

it 
an be moved anywhere in the 
al
ulation at no penalty (e.g. it doesn't have to be moved 
arefully, like a

matrix).
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The varian
e is the average of the typi
al variations of the measured values (obtained by applying A to

the ve
tor) from the mean (the expe
tation value). It is de�ned as:

(∆A)2 = 〈V |(A− 〈A〉)†(A− 〈A〉)|V 〉
= 〈V | (A− 〈A〉)2 |V 〉
= 〈(A − 〈A〉)2〉.

It is often 
onvenient to de�ne:

|X〉 = (A− 〈A〉) |V 〉

so that

(∆A)
2
= 〈X |X〉

Then we 
an similarly say:

(∆B)2 = 〈Y |Y 〉

and

〈(B − 〈B〉)†(A− 〈A〉)〉 = 〈Y |X〉.
We almost immediately 
an 
ombine things we've learned above (the S
hwartz Inequality) and 
ome to an

interesting formula, whi
h we will use later:

(∆A)
2
(∆B)

2
= 〈X |X〉〈Y |Y 〉 (1)

= |X |2|Y |2 (2)

≥ |〈X |Y 〉|2. (3)

It is 
onvenient to rewrite this inequality in a more suggestive form, starting from:

|〈X |Y 〉|2 = zz∗ ≥
( 〈X |Y 〉 − 〈Y |X〉

2i

)2

≥
( 〈(A− 〈A〉)(B − 〈B〉)〉 − 〈(B − 〈B〉)(A − 〈A〉)〉

2i

)2

=

( 〈AB〉 − 〈A〉〈B〉 − 〈B〉〈A〉 − 〈A〉〈B〉 − 〈BA〉+A〈B〉+B〈A〉 − 〈A〉〈B〉
2i

)2

=

( 〈AB〉 − 〈BA〉
2i

)2

=

( 〈[A,B]〉
2i

)2

This �nally lets us write:

√

(∆A)
2
(∆B)

2
= ∆A∆B ≥ 〈[A,B]〉

2i
.

There are far better ways to generalize this, but it will serve our purposes for this le
ture.

3.4 A 
omment on fun
tion spa
es

The 
on
ept of a ve
tor spa
e is not limited only to mathemati
al obje
ts in a matrix representation.

Fun
tions of a 
ontinuous variable, like f(x), 
an ALSO be part of a spa
e with addition, s
alar multipli
ation,

et
. This kind of spa
e is a Hilbert Spa
e. There are relationships between the matrix representation and

the fun
tion representation of a spa
e; the Dira
 Notation a

ommodates both of them.
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• In the matrix representation, a ket is a 
olumn matrix; in a Hilbert Spa
e, a ket is a fun
tion, like

f(x).

• In the matrix representation, an operator is a square matrix; in a Hilbert Spa
e, an operator is a

fun
tion that modi�es f(x) and returns another fun
tion in the Hilbert Spa
e, g(x) .

• In the matrix representation, the inner produ
t is a matrix multipli
ation that results in a real number;

in a Hilbert Spa
e, the inner produ
t is an in�nite sum over the produ
ts of two fun
tions, f∗(x)g(x),
multiplied by a s
ale fa
tor ∆ (related to the step size of the sum), in the limit that ∆ → 0. Thus:

〈f |g〉 =
ˆ ∞

−∞
f∗(x)g(x) dx.

• In the matrix representation, the expe
tation value is a matrix multipli
ation of a row ve
tor, a square

matrix, and a 
olumn ve
tor, yielding a real number. In a Hilbert Spa
e:

〈f |A|g〉 =
ˆ ∞

−∞
f∗(x)Ag(x) dx.

Either of these approa
hes is part of a strategy to utilizing the S
hroedinger Wave Equation, and they will

often be mixed as we move forward.
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4 The S
hroedinger Wave Equation (Non-Relativisti
 QuantumMe-


hani
s)

It is impossible, in the 
ontext of this le
ture series, to review in depth the S
hroedinger Wave Equation. You

are expe
ted to have already seen this at least on
e in an undergraduate 
ourse. The fundamental equation

of quantum me
hani
s is a re-statement of energy 
onservation using the Hamiltonian Formalism. That is,

a

ording to this formalism:

H = T + V = E

where H , the �Hamiltonian� of the system whi
h 
ompletely des
ribes energy in the system, is the sum of

kineti
 energy, T , and potential energy, V . This should be equal to the total energy of the system.

Consider a single-parti
le system. In 
lassi
al me
hani
s, the kineti
 energy of a parti
le 
an be written:

T =
p2

2m
.

(I leave it as an exer
ise to the student to demonstrate this, starting from the earliest form we learn,

T = KE = 1
2mv

2
). In quantum me
hani
s, momentum, P , is an operator whose a
tion on the wave fun
tion

of the single-parti
le system is to measure the momentum of the system, e.g.:

P |ψ(x, y, z)〉 = p |ψ(x, y, z)〉 .

In terms of linear algebra/matrix me
hani
s, we re
ognize this statement as an eigenvalue equation. We 
an

write the operator, P , as a fun
tion in a Hilbert Spa
e - a ve
tor spa
e for fun
tions. The fun
tional form

of the momentum operator is

P = −i~
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

and so we arrive at the operator form of the S
hroedinger Wave Equation:

H |ψ〉 = E |ψ〉
(T + V ) |ψ〉 = E |ψ〉

(

1

2m
P 2 + V

)

|ψ〉 = E |ψ〉
(

− ~
2

2m

(

∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)

+ V

)

|ψ〉 = E |ψ〉

The devil is in the details, of 
ourse. Usually, on
e you learn this, you then make your pen
il bleed by having

to solve for the energy eigenvalues given a potential (e.g. the harmoni
 os
illator potential, a square well,

et
.) and a wave fun
tion. We will not do this, but instead skip on into orbital angular momentum (e.g.


onsider system like a single ele
tron trapped in the ele
tri
 potential of a 
entral nu
leus, whi
h 
an exe
ute

orbital motion in the presen
e of that potential).✬

✫

✩

✪

In-Class Exer
ise: The Momentum of a Plane Wave

Consider a plane wave, whose wave fun
tion is given by:

|ψ(x, y, z, t)〉 = Ae−i~(kx−ωt).

What is the momentum of this plane wave?
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5 Review of Angular Momentum

In 
lassi
al physi
s, angular momentum is de�ned as the 
ross-produ
t of the lever arm dire
tion, ~r, at a
point (with respe
t to the 
enter of rotational motion) with the linear momentum, ~p, at that same point:

~L = ~r × ~p.

We know the form of the momentum:

P |ψ(x, y, z)〉 = −i~
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

|ψ(x, y, z)〉 .

There are relationships between the 
omponents of the angular momentum. If we write out the 
ross-

produ
ts that yield ea
h 
omponent:

Lx = rypz − rzpy

Ly = rzpx − rzpz

Lz = rxpy − rypx

we 
an then ask and answer questions like:

• Does the angular momentum operator 
ommute with the Hamiltonian? What does this imply?

• Sin
e, in quantum me
hani
s, momentum is an operator and not simply a number, do the 
omponents

of angular momentum 
ommute with one another? That is, 
an we say that LxLy = LyLx and the

result of any measurement of the x-
omponent of angular momentum, then the y-
omponent of angular

momentum, is the same if we measure �rst y and then x? If not, what does this imply?✬

✫

✩

✪

In-Class Exer
ise: Commutation Relations of the Angular Momentum Operators

Demonstrate that the 
ommutation relations of the 
omponents of the angular momentum operators are, in

fa
t:

[Li, Lj ] = i~Lk.

In other words, show that the 
omponents DO NOT 
ommute and the order of operation (measure x, then

y) a�e
ts the out
ome of the measurement. From this, we 
an derive the following useful relationship, whi
h

we take as given for the remainder of this le
ture series:

~L× ~L = i~~L.

5.1 The Commutation of the Hamiltonian and the Angular Momentum Oper-

ator

It 
an be shown that, if the potential part of the Hamiltonian 
onsists of a spheri
ally symmetri
 potential,

then the Hamiltonian 
ommutes with the Angular Momentum Operator; that is,

[L2, H ] = 0.

and also that

[Li, H ] = 0

What does this imply?
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As dis
ussed earlier in the �Basi
 Mathemati
s� se
tion, 
ommutation of two operators implies that they

ea
h possess a 
ommon set of eigenve
tors that simultaneously diagonalize both operators (yielding 
ommon

eigenvalues). We 
an des
ribe these solutions using by eigenve
tors (wave fun
tions) of the form |ψ(E,α)〉,
where E and α here denote the eigenvalues of H and L2

, respe
tively.

5.2 The Non-Commutation of Angular Momentum Components and Informa-

tion

The fa
t that we 
annot, in quantum me
hani
s, 
ommute all of the individual 
omponents of angular

momentum has 
onsequen
es.

• We 
an only spe
ify with 
ertainty one of the three 
omponents at any one time. It is 
onventional to


hoose Lz.

• This is, in a deep sense, dire
tly related to the Heisenberg Un
ertainty Prin
iple. Having exa
tly

spe
i�ed Lz, we 
an ask if there is an inequality relationship between the remaining two 
omponents

of the angular momentum, ala

∆Lx∆Ly ≥ 〈[Lx, Ly]〉
2i

.

(in other words, is the right-hand side non-zero, so that this is more than a trivial inequality?). To

answer this, we grind through the 
al
ulation:

〈[Lx, Ly]〉 = 〈ψ|LxLy − LyLx|ψ〉
= 〈ψ|(i~Lz)|ψ〉
= i~〈ψ|Lz|ψ〉
= i~〈Lz〉.

So we arrive at the statement of the Heisenberg Un
ertainty Prin
iple for angular momentum:

∆Lx∆Ly ≥ ~

2
〈Lz〉 ≥

~

2
.

We 
on
lude from this that if one spe
i�es the angular momentum along the z-dire
tion, one has

NO 
ontrol in spe
ifying the angular momentum along both the x- and y-
omponents with absolute

pre
ision.

5.3 The Eigenvalues of L
z

We 
an write the Lzoperator in the spa
e of 
artesian 
oordinates (x,y,z) as:

Lz = −i~
(

x
∂

∂y
− y

∂

∂x

)

.

It is more 
onvenient, however, to express this in spheri
al 
oordinates - espe
ially be
ause in quantum

me
hani
s we are often interested in spheri
ally symmetri
 potentials, and these problems simplify in spheri
al


oordinates.✓
✒

✏
✑

In-Class Exer
ise: Transformation of Coordinate System

Transform the Cartesian-spa
e form of Lz to the spheri
al-
oordinate form. That is, express

Lz not in (x,y,z) but in (ρ,θ,φ).

The 
orre
t expression in spheri
al 
oordinates is quite simple:

Lz = −i~ ∂

∂φ
.
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Figure 4: The relationship between Cartesian 
oordinates and spheri
al 
oordinates. Figure is from Ref.

[22℄.

We 
an now setup and solve the eigenvalue problem, using the fun
tional form of the operator:

Lz |ψ(ρ, φ)〉 = lz |ψ(ρ, φ)〉 −→ −i~ ∂

∂φ
ψ(ρ, φ) = lzψ(ρ, φ).

This is a �rst-order di�erential equation, and by inspe
tion (that is, with some experien
e in solving these

under your belt!), you 
an simply write the solution as:

ψ(ρ, φ) = R(ρ)eilzφ/~.

At �rst glan
e, it appears that lz 
an be any 
omplex number. We must impose the Hermiti
ity requirement

on the problem in order to 
ome to a 
omplete understanding of the eigenvalues:

〈ψ1|Lz |ψ2〉 = 〈ψ2|Lz |ψ1〉∗ .

If we write this in the 
oordinate basis:

ˆ ∞

0

ˆ 2π

0

ψ∗
1

(

−i~ ∂

∂φ

)

ψ2 ρ dρ dφ =

[
ˆ ∞

0

ˆ 2π

0

ψ∗
2

(

−i~ ∂

∂φ

)

ψ1 ρ dρ dφ

]∗

. (4)

To solve this, integration by parts is required:

ˆ b

a

u dv = uv|ba −
ˆ b

a

v du

where in our 
ase we identify:

u = ψ∗
2

dv = −i~ ∂

∂φ
ψ1dφ = −i~dψ1

du = dψ∗
2 =

∂

∂φ
ψ∗
2dφ

v = −i~ψ1
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We 
an then write the right-hand side of the original equality as:

[
ˆ ∞

0

ˆ 2π

0

ψ2

(

−i~ ∂

∂φ

)

ψ1 ρ dρ dφ

]∗

=

[
ˆ ∞

0

ρ dρ (−i~ψ∗
2ψ1)|2π0 −

ˆ ∞

0

ˆ 2π

0

ρ dρ

(

−i~ψ1
∂

∂φ
ψ∗
2dφ

)]∗

=

ˆ ∞

0

ρ dρ (−i~ψ2ψ
∗
1)|2π0 + L.H.S.

where �L.H.S.� is the left-hand side of Equation 4. The original L.H.S. and this term 
an
el ea
h other,

leaving:

ˆ ∞

0

ρ dρ (−i~ψ2ψ
∗
1)|

2π
0 = 0

We 
an simply then write a relationship between the two integrands, sin
e every other part of the integral

is identi
al, that satis�es this above requirement:

ψ2(ρ, 2π)ψ
∗
1(ρ, 2π)− ψ2(ρ, 0)ψ

∗
1(ρ, 0) = 0.

The only way to satisfy this equation is if ψ(ρ, 2π) = ψ(ρ, 0). This imposes a boundary 
ondition on the

angular part of the wave fun
tion:

1 = e2πilz/~.

We thus �nd that

1. lz must be a real number

2. lz 
an only take integer values if it is to satisfy this equation

Thus:

lz = m~, m = 0,±1,±2, ...

and we learn that the z-
omponent of angular momentum is predi
ted to be a quantized quantity. We 
an

label m to be the magneti
 quantum number, the true quantum number of the state des
ribing the proje
tion

of orbital angular momentum along the z-dire
tion.

5.4 The Eigenvalues of L2

It 
an be shown that there is another operator, independent of Lz, that not only also 
ommutes with the

Hamiltonian (for azimuthally symmetri
 wave fun
tions) but also with Lz itself. That operator is the square

of the total angular momentum ve
tor, L2 = L2
x+L

2
y+L

2
z. On
e we spe
ify the eigenvalues of this operator,

we 
an 
ompletely spe
ify the angular momentum state of a system.

What are the eigenvalues of this operator? We 
an begin by writing:

L2 |ψ(α,m)〉 = α |ψ(α,m)〉

wherem are the eigenvalues of the Lz operator and α are the eigenvalues of the L2
operator. I am intentionally

being a bit 
areful about not assuming that the eigenvalues are just ℓ2 on the right-hand side of this equation;
as we will see, applying the momentum operator twi
e in su

ession doesn't merely yield the square of a

single number.

For the next step, it will be 
onvenient to rewrite Lx and Ly in terms of two other operators,

L+ ≡ Lx + iLy

L− ≡ Lx − iLy
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and then ask the question: what are the 
ommutation relations of these operators with Lz? To answer this:

[Lz, L+] = [Lz, Lx] + i[Lz, Ly]

= i~Ly + i (−i~Lx)

= ~ (Lx + iLy) = ~L+

Likewise,

[Lz, L−] = [Lz, Lx]− i[Lz, Ly]

= i~Ly − i (−i~Lx)

= −~ (Lx − iLy) = −~L−

We 
an then 
onsider what it means to have these new operators, L+ and L−, a
t on a de�nite state of

|ψ(m)〉. Spe
i�
ally, we 
an ask, �What will Lz measure after L± a
ts on a de�nite state of |α, β〉?� Let's

give this a try:

Lz (L+ |ψ(m)〉) = ([Lz, L+] + L+Lz) |α, β〉
= (~L+ + L+Lz) |α, β〉
= ~L+ |α, β〉+ L+β |α, β〉
= (β + ~) (L+ |α, β〉)

From this, we 
on
lude that:

Lz (L+ |α, β〉) = Lz |α, β + ~〉

That is, the a
t of applying L+to a state of de�nite m, |α, β〉, and then measuring the z-proje
tion of its total
angular momentum is EQUIVALENT to having just applied the Lz operator to a state |α, β + ~〉. We 
an

then see that L+ is the �Raising Operator� of angular momentum proje
tion along the z-axis. Similarly, an

equivalent exer
ise reveals that L− is the Lowering Operator of angular momentum, de
lining the proje
tion

along the z-axis by one unit. For a �xed amount of total orbital angular momentum, it is possible to move

m through all its possible values up to a maximum value and down to a minimum value. If the maximum

value is βmax, the minimum value must be −βmax and the distan
e between the minimum and maximum

values of m is given by 2βmax. There is a VCR joke in here somepla
e, but I'm probably the only one old

enough to get it.

We 
an also determine the 
ommutation relation between the raising and the lowering operator:

[L+, L−] = L+L− − L−L+

= (L2
x − iLxLy + iLyLx + L2

y)− (L2
x + iLxLy − iLyLx + L2

y)

= −2iLxLy + 2iLyLx

= −2i(LxLy − LyLx)

= −2i(i~Lz)

[L+, L−] = 2~Lz

You 
an also demonstrate that [L2, L+] = 0 and [L2, L−] = 0. From this, you 
an see that:

L2L+ |α, β〉 = L+L
2 |α, β〉 = αL+ |α, β〉 .

We should now ponder the two equations involving raising/lowering operators and L2
and Lz,

L2L± |α, β〉 = αL± |α, β〉
LzL± |α, β〉 = (β + ~)L± |α, β〉 .
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We see that if we were to ask, what happens when

L+ |α, β〉

we would be able to 
on
lude that L+ |α, β〉 ∝ |α, β + 1〉, or more mathemati
ally:

L+ |α, β〉 = C(α, β)+ |α, β + 1〉
L− |α, β〉 = C(α, β)− |α, β − 1〉

To solve the original problem in whi
h we were interested - the eigenvalues of L2
- it is 
onvenient to

write:

L2 = L2
z +L2

x + L2
y

= L2
z +

1

2
(L+L− + L−L+) .

We 
an also do a bit more mathemati
al work and see that:

L2 = L2
z +

1

2
(L+L− − L−L+ + L−L+ + L−L+)

= L2
z +

1

2
([L+, L−] + 2L−L+)

L2 − L2
z =

1

2
2~Lz + L−L+

L2 − L2
z − ~Lz = L−L+

With all of these relationships in mind, let's move to the real problem we want to solve.

Let us apply the operator L−L+ to a de�nite state of |α, β〉 = |α, βmax〉:

L−L+ |α, βmax〉 = 0.

Why? The ladder operator 
annot raise β above its maximum value. But, then, it must also be true that:

(L2 − L2
z − ~Lz) |α, βmax〉 = 0

α− β2
max − ~βmax = 0

α = β2
max + ~βmax

So we have our �rst glimpse of an eigenvalue of L2
, and we see that it's related to the maximum value that

β 
an take. What about 
onsidering a state where the minimum possible value of β is present? In that 
ase,

it must be true that:

L− |α, βmin〉 = 0

L+L− |α, βmin〉 = 0

(L2 − L2
z + ~Lz) |α, βmin〉 = 0

α− β2
min + ~βmin = 0

α = βmin(βmin − ~)

And so it must also be true that −βmin = βmax, by these two relations. With all of this information, we 
an

now solve for the eigenvalues of L2
.

We have learned the following:
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1. The eigenvalues of L2
are related to the integer eigenvalues of Lz, ℓz = m~.

2. While Lz 
an have a range of eigenvalues, m~ = (0,±1,±2, ...)~, the eigenvalues of L2
are �xed for a

given set of eigenvalues for Lz by the relationship α = βmax(βmax + ~).

It is 
onvention to say that a system is prepared in a state whose orbital angular momentum quantum number,

ℓ, is related to the z-proje
tion of the total angular momentum, m, by ℓ = mmax. The a
tual total orbital

angular momentum of the system is then given by:

√
α =

√

ℓ~(ℓ~+ ~) =
√

ℓ(ℓ+ 1)~.

Note that this is NOT required to be an integer; the only quantity that is guaranteed to be integer-quantized

is the z-
omponent of the total orbital angular momentum. We 
an then say that for a given ℓ, we have a
range of allowed proje
tions of Lz:

ℓ m
0 0
1 0,±1
2 0,±1,±2

et
.

5.5 Solutions to the Hydrogen Atom

It is instru
tive to look at the solutions to the hydrogen atom (a full, 3-D spheri
al potential), to get a sense

of what the angular momentum wave fun
tions will look like for two parti
les in a bound state (a 
ommon

problem in nature).

ψ(ρ, θ, φ) =

√

(

2

na0

)3(
(n− ℓ− 1)!

2n(n+ ℓ)!

)

e−ρ/2ρℓL2ℓ+1
n−ℓ−1(ρ)Y

m
l (θ, φ)

where

L2ℓ+1
n−ℓ−1(ρ) =

ρ−(2ℓ+1)eρ

(n− ℓ− 1)!

dn−ℓ−1

dxn−ℓ−1

(

e−ρρn+ℓ
)

is an Laguerre polynomial, des
ribing the radial stru
ture of the orbit with quantum numbers (n, ℓ,m) and

Y m
ℓ (θ, φ) =

√

(2ℓ+ 1)

4π

(ℓ −m)!

(ℓ +m)!
Pm
ℓ (cos θ)eimφ

are the normalized spheri
al harmoni
s 
ontaining the asso
iated Legendre Polynomials,

Pm
ℓ (cos θ) = (−1)

m
(1− cos2 θ)m/2 dm

d cos θm

(

1

2ℓℓ!

dℓ

d cos θℓ

[

(

cos2 θ − 1
)ℓ
]

)

.

Some of the spheri
al harmoni
s are visualized in Fig 5.

We see that the angular momentum 
ontrols the stru
ture of the orbits of an ele
tron, giving them shape.

This seems like a trivial 
on
lusion - of 
ourse, angular momentum should be the thing that 
ontrols the

shapes sin
e it has to do with the orbits themselves - but this basi
 idea will 
arry forward into things

like parti
le de
ay. When a parti
le de
ays, the parent 
ontains a 
ertain amount of angular momentum

(potentially both in the form of orbital and spin angular momentum), and any orbital momentum present in

the �nal state 
ontrol the angular stru
ture of the outgoing parti
les. How that orbital angular momentum

manifests and is partitioned depends on the parti
ular details of the de
ay, and the spin angular momentum

of the �nal-state parti
les.
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Figure 5: Visualization of some of the spheri
al harmoni
s. From top to bottom, the rows represent ℓ =
0, 1, 2, 3, while the entries from left-to-right in ea
h row represent m = −ℓ,−ℓ+1, ..., 0, ..., ℓ− 1, ℓ. From Ref.

[23℄.
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6 Spin Angular Momentum

6.1 Des
ribing spin using ve
tor spa
es

The observation of spe
tral lines in the alkali metals reveal that for ea
h prin
iple quantum number, n,

there are two 
orresponding, �nely spa
ed spe
tral lines. This implies a two-state phenomenon as regard the

ele
tron, further splitting ea
h spe
tral line into two distin
t lines. We'll see this in the math later. For now,

let us assume we need to des
ribe a two-state angular momentum phenomenon. Denote the wave fun
tion

of the ele
tron as:

|ψ〉

and for now let us assume that the portion of the wave fun
tion asso
iated with this additional set of states

is independent of the other parts of the wave fun
tion (e.g. orbital angular momentum), so that

|ψ〉 = |ψ(±, ℓ,m)〉 .

Here, I have denoted the new two-state portion of the wave fun
tion as |ψ(±)〉. We 
an short-hand this as

|±〉. We 
an now expli
itly write the two independent states as orthonormal basis ve
tors in a two-
omponent

spa
e:

|+〉 =
(

1
0

)

, |−〉 =
(

0
1

)

.

These two-
omponent obje
ts are not ve
tors, and they are not s
alars; they are 
alled �spinors.� One then

then 
onstru
t an arbitrary state (spinor) from these basis spinors:

|χ〉 = a |+〉+ b |−〉 .
Let us now explore the features of this new quantity, whi
h is 
alled �spin angular momentum� or just

�spin� for short. Please note: while the original histori
al models of spin a
tually did in
lude a spinning

ele
tron, there is no a
tual me
hani
al motion of the ele
tron present that results in this property. Spin is

an inherent quantum property whi
h we 
an des
ribe using the me
hani
al analog, but for whi
h there is

no a
tual me
hani
al equivalent in 
lassi
al physi
s. You had a homework problem on that helped illustrate

the point.

It is an empiri
al fa
t that if one prepares an atom in a state of zero total orbital angular momentum

and one then measures the angular momentum of the ele
tron, it still presents two non-zero values of its

angular momentum 
omponent along the z-dire
tion:

Sz = ±1

2
~.

Based on this observation, we 
an then determine the form of the operator required to measure the z-


omponent of the spin angular momentum of the ele
tron. We do this in two steps.

1. Prepare a state of pure �spin-up,� sz = 1
2~, and measure that 
omponent using the z-
omponent of the

spin operator:

Sz |χ〉 = +
1

2
~ |χ〉 −→

(

s1 s2
s3 s4

)(

1
0

)

= +
1

2
~

(

1
0

)

.

If we solve this, we �nd that s1 = +~

2 and s3 = 0

2. Prepare a se
ond state of pure �spin-down,� sz = −~

2 . Measure that 
omponent:

Sz |χ〉 = −1

2
~ |χ〉 −→

(

s1 s2
s3 s4

)(

0
1

)

= +
1

2
~

(

0
1

)

.

Again, if we solve this for the unknown 
omponents of the spin proje
tion operator along the z-dire
tion,

we �nd s3 = 0 and s4 = −~

2 .
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Assembling all of the pie
es, we �nd the form of the Sz operator:

Sz =
1

2
~

(

1 0
0 −1

)

It 
an be shown that the operators for proje
ting the spin of a parti
le along the x- and y-dire
tions are

given by:

Sx =
1

2
~

(

0 1
1 0

)

, Sy =
1

2
~

(

0 −i
i 0

)

.

We 
an write generally that

~S =
~

2
~σ.

Please note that the designation of whi
h dire
tion is x,y,z is 
onventional; we 
ould, histori
ally, have

talked instead about measuring the spin proje
tion of an ele
tron along the x-dire
tion and de�ned that as

the dire
tion of the magneti
 �eld gradient in, say, a Stern-Gerla
h-type experiment. But we adopt this


onvention (where the z-axis is, in fa
t, that dire
tion) and pro
eed 
onsistently.

6.2 Total Angular Momentum

Sin
e orbital angular momentum alone is insu�
ient to des
ribe the total angular momentum of, say, an

atom, we must reformulate the operator language we developed purely for orbital angular momentum. In

doing so, we 
an des
ribe total angular momentum in a system of parti
les. Let us de�ne:

~J = ~L+ ~S,

where

~J = (Jx(= Lx + Sx), Jy(= Ly + Sy), Jz(= Lz + Sz)) and ea
h of the elements of this operator is

also an operator. We 
an qui
kly reuse our old de�nitions for 
ommutation relations of orbital angular

momentum, ladder operators, et
.

Jz |j,m〉 = m~ |j,m〉
J2 |j,m〉 = j(j + 1)~2 |j,m〉
J± |j,m〉 =

√

(j ∓m)(j ±m+ 1)~ |j,m± 1〉
[J2, Jz] = 0

[J+, J−] = 2~Jz

[J±, Jz] = ±~J±

We 
an also qui
kly re
ognize, by thinking about total angular momentum as the ve
tor sum or orbital and

spin angular momenta, that:

j = ℓ+ s

m = mℓ +ms.

We see then that j = 0,± 1
2 ,±1,± 3

2 ,±2, ... and the total magneti
 quantum number is given by the range:

m = −j, −j + 1
2 , −j + 1, ..., 0, ..., j − 1, j − 1

2 , j.
We also need to de�ne a new operator, whi
h results from:

J2 = L2 + 2~L · ~S + S2.

We have a �spin-orbit term� present in the total angular momentum squared:

~L · ~S =
1

2

(

J2 − L2 − S2
)

~L · ~S |ℓ,mℓ, s,ms〉 =
~
2

2
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)] |ℓ,mℓ, s,ms〉 .
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6.3 Manipulating Angular Momentum

Consider a 
urrent loop in a 
lassi
al physi
s setting. If exposed to an external magneti
 �eld,

~B, a rotational
for
e is exerted on the loop. This torque is given by:

~τ = ~µ× ~B

where ~µ is the magneti
 dipole moment of the loop. In the Bohr or Sommerfeld models of the atom, the

ele
tron in orbit around the 
entral nu
leus is analogous to a 
lassi
al 
urrent loop. We might then start

from the 
lassi
al e�e
t of a magneti
 dipole intera
ting with an external magneti
 �eld, and then extend

that into the quantum realms of orbital angular momentum and spin angular momentum.

6.3.1 Classi
al Model

Consider a square loop of 
urrent, I. The magneti
 moment is given by:

~µ =
I · A
c

n̂

where A is the area of the loop, c is the speed of light, and n̂ is a unit ve
tor that is determined by a

right-hand rule: 
url your �ngers on your right hand in the dire
tion of 
urrent �ow (the dire
tion positive


harge is �owing in the 
ir
uit) and your thumb then points in the dire
tion n̂.
Su
h a 
urrent loop, subje
ted to an external magneti
 �eld, experien
es the torque given above; this

torque tends to rotate the loop until the magneti
 moment is parallel to the external magneti
 �eld, and

then the rotation stops. The intera
tion energy is given by:

Hint =

ˆ

T (θ) dθ =

ˆ

µB sin(θ) dθ = −µB cos θ = −~µ · ~B.

While 
on
eived using a square loop of 
urrent, the formulas apply just as well to 
ir
ular �ows of 
urrent.

So, let's 
onsider a very simple model of an atom.

Imagine a single ele
tron, with 
harge e and mass m, orbiting in a 
ir
le under the in�uen
e of a 
entral

Coulomb potential (e.g. due to a single proton). The 
urrent asso
iated with the 
harge is:

I =
∆Q

∆t
=

q

(2πr)/v
=

qv

2πr

where v is the speed of the ele
tron and r is the orbital radius. The magneti
 moment of this 
lassi
al, �toy�
atom is then:

µ =
IA

c
=

qv

2πr

πr2

c
=
( q

2mc

)

mvr =
q

2mc
L

where L is the angular momentum, L = Iω = mr2 v
r = mvr, of a single orbiting mass. Thus the magneti


moment is related to the single-parti
le orbital angular momentum, and we have this prefa
tor whi
h is

written as

γ =
q

2mc

and is known as the �gyromagneti
 ratio� of the ele
tron. In general γ = µ
L , and here in this toy model we

have solved exa
tly for γ.

6.3.2 Quantum Model

In non-relativisti
 quantum me
hani
s, one writes the Hamiltonian for a 
harged parti
le under the in�uen
e

of an external magneti
 �eld in terms of the momentum operator and the ve
tor potential, where:

~B = ~∇× ~A
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The Hamiltonian is then written as:

H =
1

2m
(~P − q ~A)2

If one solves this for the intera
tion part of the Hamiltonian, whi
h are the 
ross-terms involving

~A · ~P , one
�nds that the 
lassi
al result holds:

~µ =
q

2Mc
~L.

where M is the mass of the parti
le (to avoid 
onfusing it with m, the quantum number of the z-proje
tion

of angular momentum).

We know that angular momentum is quantized along the z-dire
tion, so that if we then 
onsider the

z-
omponent of the magneti
 moment we �nd:

µz =
q

2Mc
m~ (m = 0, ±1, ...) .

The quantity q~/2Mc is referred to as the Bohr Magneton, and for an ele
tron is found to be:

q~

2Mc
≈ 0.6× 10−8eV/G.

6.3.3 Spin Magneti
 Moment

There is no 
lassi
al analog for spin - it is merely intrinsi
 angular momentum spe
i�
 to a parti
le. However,

we 
an assume that, sin
e in all other ways it manifests as angular momentum, it too must have a relationship

to a magneti
 moment:

~µ = γ~S.

We 
an then write γ in a form reminis
ent of the gyromagneti
 ratio for the 
ase of orbital angular momentum:

γ = g
q

2Mc

where g is a fa
tor that needs to be determined experimentally - it is not predi
ted by this framework.

The intera
tion term in the Hamiltonian between an external magneti
 �eld and this intrinsi
 magneti


moment is then:

Hspin−B
int = −~µ · ~B =

ge

2Mc
~S · ~B =

ge~

4Mc
~σ · ~B.

We see that the intrinsi
 magneti
 moment due to spin is just g/2 Bohr Magnetons. Experimentally, g ≈ 2.
Making the approximation that g = 2 , we observe that the intrinsi
 magneti
 moment due to spin is

TWICE that for orbital angular momentum. The fa
t that g is not exa
tly equal to 2 is important, and

deeply 
onne
ted to the more fundamental theory of nature - quantum �eld theory, and spe
i�
ally quantum

ele
trodynami
s. It is possible, in that more fundamental model of nature, to 
al
ulate g from �rst prin
iples.

The 
urrent measurement of g and the theoreti
al 
al
ulation agree very well. The experimentally measured
value is expressed in terms of its deviation from 2:

a =
g − 2

2
= 0.0115965218073(28),

where the un
ertainty is in the last two de
imal pla
es and is given in the parentheses. It is known to better

than 1 part in 1 billion.

The measurement of the magneti
 moment of parti
les, su
h as the ele
tron, the muon, and the tau

lepton, are not only tests of the Standard Model of Parti
le Physi
s but a means to probe for physi
s beyond
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the Standard Model. For instan
e, additional parti
les, not des
ribed by the Standard Model but present

in nature, 
an parti
ipate in self-intera
tions (higher-order Feynman diagrams) of the ele
tron, muon, and

tau lepton and in�uen
e the magneti
 moment's value. The measurement of the muon magneti
 moment is


urrently an area of hot pursuit, as the best measured value is not in perfe
t agreement with the 
al
ulated

value. The predi
ted magneti
 moment of the tau lepton has been 
al
ulated (
.f. Ref. [24℄) but to date no

dire
t measurement of it has been possible due to the very short lifetime of the tau lepton.

6.3.4 A Comment: Stern-Gerla
h-style Experiments

A question for you right now would be the following:

• Why does the Stern-Gerla
h experiment employ a magneti
 �eld gradient rather than just a uniform

magneti
 �eld?

The answer is that a uniform �eld 
an only rotate the magneti
 moments to align with the �eld. Sin
e the

magneti
 moments of ele
trons have two possible orientations along the z-axis - along or against - half the

ele
trons should align with and half against the �eld. But this would not split the beam, be
ause on
e the

magneti
 moments are aligned properly with the �eld there is no remaining for
e on the atoms or ele
trons.

Instead, a magneti
 �eld gradient is needed to then push the little internal magnets of the atoms/ele
trons

in a spe
i�
 dire
tion in the �eld. This 
an be seen as follows:

~F = −~∇Hint = ~∇(~µ · ~B) = (~µ · ~∇) ~B = µz
∂Bz

∂z
k̂.

This equation tells us that a gradient is required to exert a for
e on the tiny magneti
 moments of the

atom/ele
tron. It is this tiny for
e that allows for the splitting of the beam in a Stern-Gerla
h-style experi-

ment. One expe
ts the splitting to o

ur along the magneti
 �eld axis.

It is important to note that even if one prepares the atoms in a S-G-style experiment in a state L = 0 so
that Lz = 0~, it is still possible to split the beam if:

• The atom 
ontains an odd number of ele
trons in its valen
e shell (its outermost shell). This leaves

an unpairs spin angular momentum, and this unpaired spin angular momentum has no other spin to


ompensate for its orientation along/against the magneti
 �eld gradient

• The ele
tron must 
ontain an internal unit of angular momentum, to allow for an internal magneti


moment to intera
t with the external magneti
 �eld gradient.

Sin
e the above o

urs in an S-G-style experiment with L=0, it allows us to infer the presen
e of internal

angular momentum and measures its value.

6.4 Addition of Spin Angular Momentum

We have so far been fo
used on very, very simple systems 
ontaining only a single parti
le with spin angular

momentum, or spin and orbital angular momentum. But what happens for more realisti
 systems (e.g.

where you have multiple parti
les in various states of spin and orbital angular momentum)? For instan
e,

we know experimentally that quarks never appear by themselves in experiments; they always appear, when

dete
table in a �nal state, in bound pairs (mesons, like the pion) or triplets (baryons, like the proton or

neutron). Thus the stru
ture of matter (e.g. the proton, or pions that parti
ipate in strong intera
tions)

fundamentally depends on two- and three-parti
le systems. Regarding spin angular momentum, how does

this business work then?

Consider a simple extension of the one-parti
le system: a two-parti
le system. Let ea
h parti
le have

spin angular momentum si =
1
2~ and let ea
h have possible z-axis proje
tions of its spin angular momentum,

szi = ± 1
2~. We have two parti
les, ea
h with their own spin eigenve
tors; this is a two-parti
le Hilbert spa
e,

requiring four total ve
tors to span the spa
e. We might naively write the four ve
tors thus:

|ψ1, ψ2〉 = |s1,m1, s2m2〉
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so that the four ve
tors are:

|1〉 =

∣

∣

∣

∣

1

2
,
1

2
,
1

2
,
1

2

〉

≡ |++〉

|2〉 =

∣

∣

∣

∣

1

2
,−1

2
,
1

2
,
1

2

〉

≡ |−+〉

|3〉 =

∣

∣

∣

∣

1

2
,
1

2
,
1

2
,−1

2

〉

≡ |+−〉

|4〉 =

∣

∣

∣

∣

1

2
,−1

2
,
1

2
,−1

2

〉

≡ |−−〉

Let's see how far we 
an get with this hypothesis.

We will also need spin operators for this new spa
e. It is straight-forward to show that:

~S = ~S1 + ~S2

yields exa
tly what we need, with all the ne
essary properties for our total spin operator. We then have:

Sz = S1z + S2z.

Let us then pro
eed to �nd the matrix elements of this operator. We have to 
onsider operations like

Sz |++〉 = (Sz1 + Sz2) |++〉 = (
1

2
+

1

2
)~ |++〉 = ~ |++〉 .

We 
an see immediately that, sin
e this operator leaves the ket un
hanged all o�-diagonal elements of Sz

will vanish. But we also see that two of the on-diagonal elements will be idential, leading to a degenera
y in

the spa
e:

Sz =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1









~.

We have two eigenve
tors, |+−〉 and |−+〉, that yield the same eigenvalue. The basis ve
tors we have 
hosen
naively 
learly span the ve
tor spa
e - the matrix is diagonal. So maybe we have 
hosen, if a

identally, the


orre
t basis ve
tors for our two-parti
le Hilbert spa
e.

We must then turn to the S2
operator. Let us 
ompute the matrix elements of this operator; they are

not immediately obvious (e.g. by inspe
tion). We see that

S2 = S2
1 + S2

2 + 2~S1 · ~S2.

whi
h makes this a VERY 
ompli
ated operator with 
ross-terms between the two parti
les. You 
an write

this more simply as follows:

S2 = S2
1 + S2

2 + 2

(

S1zS2z +
1

2
(S1+S2− + S1−S2+)

)

.

One 
an then brute-for
e 
ompute the matrix elements in our present basis, and in doing so we �nd:

S2 =









2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2









~
2.
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This is very interesting. We see that the middle blo
k of the matrix is not diagonal. What does this mean?

It means that we haveNOT IDENTIFIED THE COMMON BASIS OF THE TWO-PARTICLE HILBERT

SPACE THAT SIMULTANEOUSLY DIAGONALIZES Sz and S2
. That is why writing down the �naive�

eigenve
tors was a bit too naive. The goal in any multiparti
le system is to identify those eigenve
tors that do

simultaneously diagonalize both angular momentum operators, allowing them to 
ommute. We 
ould have

foreseen that this would be a problem slightly earlier, sin
e the default expression for S2
, whi
h in
ludes

a lot of 
ross-terms, does not automati
ally 
ommute with Sz. If we 
an simultaneously diagonalize both

matri
es (by �nding their 
ommon eigenbasis), we 
an guarantee that they 
ommute.

We might try writing linear 
ombinations of the kets |+−〉 and |−+〉. Let us see if this does the tri
k for
us:

|2〉 =
1√
2
(|+−〉+ |−+〉)

|3〉 =
1√
2
(|+−〉 − |−+〉)

What are we doing here, physi
ally, to the original states? We are rotating the kets in their 2-dimensional

spa
e in order to try to diagonalize the middle blo
k of the S2
matrix. We 
an break down the e�e
t of the

total spin operator on the above states and use that to �gure out what the matrix elements will look like.

For instan
e:

S2 = S2
1 + S2

2 + 2S1zS2z + S1+S2− + S1−S2+.

We 
an then 
onsider the a
tivity of ea
h pie
e on these kets:

S2
1 |2〉 =

[

1

2
(
1

2
+ 1)~2 +

1

2
(
1

2
+ 1)~2

]

|2〉 = 3

2
~
2 |2〉

S2
1 |3〉 =

[

1

2
(
1

2
+ 1)~2 − 1

2
(
1

2
+ 1)~2

]

|3〉 = 0~2 |3〉

Similarly,

S2
2 |2〉 =

3

2
~
2 |2〉

S2
2 |3〉 = 0~2 |3〉

Consider then:

S1zS2z |2〉 = −1

4
~
2 |2〉

S1zS2z |3〉 = 0~2 |3〉

We 
an then 
onsider the a
tion of the ladder operator 
ross-terms between the two parti
les:

S1+S2− |2〉 = S1+

(

|0〉+ C−(
1

2
,
1

2
) |−−〉

)

= C+(
1

2
,−1

2
)C−(

1

2
,
1

2
) |+−〉

and

S1−S2+ |2〉 = S1−

(

C+(
1

2
,−1

2
) |++〉+ |0〉

)

= C−(
1

2
,
1

2
)C+(

1

2
,−1

2
) |−+〉
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so that, together:

[S1+S2− + S1−S2+] |2〉 = C+(
1

2
,−1

2
)C−(

1

2
,
1

2
) |2〉 = ~

2 |2〉

while for |3〉 we 
an show that:

[S1+S2− + S1−S2+] |3〉 = 0~2 |3〉 .
Putting all the pie
es together and applying the S2

matrix, we �nd:

〈2|S2 |2〉 = 〈2|
(

2~2
)

|3〉 = 2~2

〈3|S2 |3〉 = 〈3| 0~2 |3〉 = 0~2

while:

〈2|S2 |3〉 = 〈3|S2 |2〉 = 0~2

What about the Sz operator? Have we maintained its diagonalization? A qui
k 
he
k shows we have -

that

(Sz1 + Sz2) |2〉 = 0~

(Sz1 + Sz2) |3〉 = 0~

We 
on
lude that by 
omposing these linear 
ombinations of the single-parti
le states we have arrived at

the eigenve
tors of the S2
and the Sz operator; in this basis, both are diagonal and guaranteed to 
ommute.

Three of the eigenve
tors have spin-1 (with three di�erent z-proje
tions of the two-parti
le spins) and one

has spin-0. We 
an denote the states by ψs sz , where s is the total spin quantum number and sz is the total
z-
omponent proje
tion quantum number. We then �nd:

s = 1 |ψ1+〉 = |++〉
|ψ10〉 = 1√

2
(|+−〉+ |−+〉)

|ψ1−〉 = |−−〉

s = 0 |ψ00〉 = 1√
2
(|+−〉 − |−+〉)

6.5 An Appli
ation of Addition of Spin Angular Momentum: Meson Spe
-

tros
opy

In this brief se
tion, I will show you how useful it is to be able to re
ognize basi
 fa
ts about the stru
ture

of matter utilizing only the most basi
 information we derived in the previous se
tion.

Mesons are 
olorless bound states of a pair of quarks. For a variety of reasons, not the least of whi
h is

the kineti
 energy available to the quarks in the bound state, the heavier the quark the more we 
an treat

the bound state in a non-relativisti
 way in QCD (the mathemati
al theory of the strong intera
tion). One


an imagine a pair of heavy quarks, for instan
e bottom quarks, bound together in a 
olorless state. To do

this requires one quark and one anti-quark. A simple example is bottomonium, bb̄.
Let us 
onsider an orbiting pair, bb̄, in a state of L = 0 total orbital angular momentum. The only

angular momentum available to the system, then, is spin. From the above example, we 
an hypothesize the

existen
e of a spin-1 �triplet� of states and a spin-0 �singlet� state. The spin-1 triplet 
onsists of three states

with di�ering z-proje
tions of their total spin angular momentum, while the singlet 
onsists only of a single

total S = 0 state.

Given all the various possible radial orbit 
on�gurations, angular momentum 
on�gurations, and the spin

singlet and tripler stru
tures for ea
h possibility, you get a ri
h spe
trum of states. For the lowest-energy

states and for the 
ase where there is no orbital angular momentum (L=0), we simply have the triplet states,

13S1, and the singlet, 11S0. These are known in the HEP 
ommunity as the �Upsilons� (dis
overed in 1977),

or Υ(1S), and the ηb(1S) (the �ay-tuh sub bee� or �ay-tuh bee�), respe
tively. The ηb(1S) was only dis
overed
in 2008, �rst by the BaBar experiment and then 
on�rmed by a se
ond BaBar Collaboration measurement

and then an independent measurement by the Belle Collaboration.
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7 The General Problem of Adding Angular Momentum

In general, our system of parti
les may 
ontain those with varying spin angular momenta and also orbital

angular momentum. We need to appeal to the notation developed in Se
tion 6.2 and pro
eed to outline the

general problem of adding angular momentum of both sorts.

When the Jz operator a
ts on a state des
ribed by the ket of a two-parti
le system (involving both orbital

and spin angular momentum, we expe
t to �nd that:

Jz |j1m1, j2m2〉 = (m1 +m2)~ |j1m1, j2m2〉 .

We know already from some experien
e with the two-spin-

1
2 parti
le 
ase that the matrix of this operator

will be both diagonal and degenerate (there are multiple ways to 
ombine the z-
omponents of the two

parti
les' spins and orbital angular momenta and still a
hieve the same total z-proje
tion). The ex
eption

to the previous statement is when m = ±(j1 + j2); in those 
ases, there is just one way to a
hieve ea
h of

the two possible maximum proje
tions.

The general problem of adding angular momentum involves:

• Re
ognizing that the kets representing the allowed ways of orienting L and S are not ne
essarily the

eigenstates of both J2
and Jz .

• Solving the eigenvalue problem to identify the 
ommon eigenstates of the two operators (whi
h, of


ourse, means making Jx and Jy non-diagonal).

• By doing this, we obtain the 
ommon eigenstates for the two operators and thus the measurable

states of the system. This is really what is meant by �solving the general problem of adding angular

momentum� - identifying the physi
al, measureable states of the multi-parti
le system.

We 
an ask a few questions now.

1. How many kets will there be? For an n-parti
le system, the total number of states is given by:

n
∏

i=1

(2ji + 1)

For example, in a system of 2 parti
les with ℓ = 0 and s = 1
2 (the 
ase we did in the notes earlier), we

expe
t (2s1+1)(2s2+1) = 4 total kets. This is, in fa
t, what we found. For the problem in Homework

3 involving ℓi = 0 and si =
1
2 for three parti
les, we expe
t (2s1 +1)(2s2 +1)(2s3 +1) = 8 total states

(whi
h, again, you 
an verify manually . . . but this makes it so mu
h simpler to �nd the total number

of kets).

2. How will we label the states? The states 
an be labeled by their total angular momentum, the z-

proje
tion of the total angular momentum, and the total angular momenta of ea
h individual parti
le

in the spa
e:

|jm, j1j2〉 with j1 + j2 ≥ j ≥ j1 − j2, j ≥ m ≥ −j.

This 
an be seen by thinking about what happens when you add two simple spa
e ve
tors. The

maximum-length ve
tor you 
an make from the two is one whose length is the sum of ea
h of their

individual lengths; the shortest you 
an make has a length given by the di�eren
e of their individual

lengths. The z-proje
tions for ea
h j state simply go from j to −j . Shankar writes the possible kets in
matrix format, labeling ea
h row and 
olumn by kets of total j, |j,m〉, suppressing the j1and j2 labels

36



to simplify the notation:

|j1 + j2, j1 + j2〉
|j1 + j2, j1 + j2 − 1〉 |j1 + j2 − 1, j1 + j2 − 1〉
|j1 + j2, j1 + j2 − 2〉 |j1 + j2 − 1, j1 + j2 − 2〉 |j1 − j2, j1 − j2〉

. . .

. . . . . .

. . .
|j1 + j2,−(, j1 + j2 − 2)〉 |j1 + j2 − 1,−(, j1 + j2 − 2)〉 |j1 − j2,−(j1 − j2)〉
|j1 + j2,−(, j1 + j2 − 1)〉 |j1 + j2 − 1,−(, j1 + j2 − 1)〉
|j1 + j2,−(, j1 + j2)〉

3. How does one then express the kets of total-j in terms of linear 
ombinations of the produ
t kets? That

is, how do you relate the above states to the states |j1m1, j2m2〉? That is the hardest part, as you

learned on Homework 3.

7.1 Appli
ation to the simple system of two spin-1/2 parti
les

To answer the last question, let us revisit the two-spin-

1
2 parti
le example from earlier in the notes. Rather

than grinding through all that matrix algebra, we 
ould instead have started from the total-j kets we expe
t

for this system: jmax = j1 + j2 = s1 + s2 = 1, and jmin = |j1 − j2| = |s1 − s2| = 0. There are only two

possibilities. So:

|1, 1〉
|1, 0〉 |0, 0〉
|1,−1〉

Consider the TOP STATE in ea
h 
olumn. For the �rst 
olumn, this is simply:

|1, 1〉 = |++〉 .

As we said earlier, there is only one way to put both spin proje
tions up, so there is an easy identity between

the total-j ket and the produ
t ket, given above. How do we then get the other states in this 
olumn?

Simple: apply the total angular momentum lowering operator - let it do all the work for you. In this


ase:

J− |1, 1〉 = J− |++〉

is what we want to do next. We know that:

J− |1, 1〉 = C−(1, 1) |1, 0〉

by de�nition. The 
oe�
ient we know how to 
al
ulate:

J− |j,m〉 = ~

√

(j +m)(j −m+ 1) |j,m− 1〉 .

In this 
ase:

j = 1,m = 1 : C−(1, 1) = ~
√
2.

So we have:

J− |1, 1〉 = ~
√
2 |1, 0〉 .
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We then need to �gure out how this then relates to the produ
t kets. We 
an also write:

J− |++〉 = (J1− + J2−) |++〉

= C−(
1

2
,
1

2
) |−+〉+ C−(

1

2
,
1

2
) |+−〉

= ~ |−+〉+ ~ |+−〉 .

Combining what we have learned:

J− |1, 1〉 = ~
√
2 |1, 0〉 = ~ (|+−〉+ |−+〉)

and solving for the state we want:

|1, 0〉 = 1√
2
(|+−〉+ |−+〉)

whi
h is EXACTLY what we found from all sorts of 
ompli
ated matrix 
omputation earlier! This is mu
h

simpler! If one lowers again, one �nds what one expe
ts:

|1,−1〉 = |−−〉 .
Now, what about the j = 0 state? Again, it will be a linear 
ombination of the only two m = 0 states

that are available: |+−〉 and |−+〉. But, it won't be the same linear 
ombination that yielded |1, 0〉. It must
be ORTHOGONAL to that linear 
ombination, and its 
oe�
ients must be real (as a matter of 
onvention

- the 
omplex portions are absorbed into the kets themselves, by 
onvention). Thus:

|0, 0〉 = α |+−〉+ β |−+〉 .

Applying these 
onstraints, we �nd:

1. From orthogonality:

〈0, 0|1, 0〉 = 0 =
1√
2
(α+ β)

0 = α+ β.

2. From the 
onstraint of real 
oe�
ients:

〈0, 0|0, 0〉 = α2 + β2 = 1.

If we then solve, we �nd:

α = −β

and so we 
an 
hoose α = 1 and β = −1, yielding:

|0, 0〉 = 1√
2
(|+−〉− |−+〉) .

Again, no need to go through all the messy diagonalization. Things get a lot simpler here.

This is the problem of �nding the Clebs
h-Gordon Coe�
ients - the numbers that multiple the states in

the linear 
ombination of produ
t kets needed to express the total-j kets (more on this problem generally

in a moment). To �nd the top state in the next 
olumn (after to �nish the easy one), and based on the


onstraints of real 
oe�
ients and orthonormality, we �nd:

|j1 + j2 − 1, j1 + j2 − 1〉 =
(

j1
j1 + j2

)1/2

|j1j1, j2(j2 − 1)〉 −
(

j2
j1 + j2

)1/2

|j1(j1 − 1), j2j2〉

for the two-parti
le 
ase.
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7.2 The Clebs
h-Gordon Coe�
ients

The problem we are trying to solve, in general, boils down to �nding those messy 
oe�
ients that one needs

in order to 
ombine the produ
t kets with the total-j kets. That's it. That's the problem.
These 
oe�
ients are 
alled Clebs
h-Gordon Coe�
ients. We 
an write them in general bra-ket notation

as:

|jm, j1j2〉 =
∑

m1

∑

m2

|j1m1, j2m2〉 〈j1m1, j2m2|jm, j1j2〉

where

〈j1m1, j2m2, ..., jnmn|jm, j1j2...jn〉 = 〈j1m1, j2m2, ..., jnmn|jm〉

are the Clebs
h-Gordon Coe�
ients themselves. They have the following properties:

1. 〈j1m1, j2m2|jm〉 6= 0 only if |j1 − j2| ≤ j ≤ j1 + j2 - this is the impli
ation of the Triangle Inequality.

We must be able to form a triangle with sides of length j1, j2, and j .

2. 〈j1m1, j2m2|jm〉 6= 0 only if m1 +m2 = m

3. They are real, by 
onvention

4. 〈j1j1, j2(j − j1|jj〉 > 0 by 
onvention (this �xes the sign of the top state)

5. 〈j1m1, j2m2|jm〉 = (−1)j1+j2−j 〈j1(−m1), j2(−m2)|j(−m)〉 - this tells us the 
oe�
ients for our nega-
tive m states given our positive m states.

7.3 The Expli
it Formula for Clebs
h-Gordon Coe�
ients

The expli
it formula for Clebs
h-Gordon Coe�
ien
ts is given by:

Cm1,m2,m
j1,j2,j

= δm,m1+m2

√

(2j + 1)(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 + j)

(j1 + j2 + j + 1)!

×
√

(j +m)!(j −m)!(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!

×
∑

k

(−1)k

k!(j1 + j1 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!(j − j2 +m1 − k)!(j − j1 −m2 + k)!

where k is any zero or positive integer su
h that the fa
torial argument is non-negative.

The Parti
le Data Guide [25℄ 
ontains a helpful table of these 
oe�
ients, reprodu
ed in Fig. 6.
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❨ ✣✣ ✤ →

✥
✸

✽➻
☞✏✑ ➭ ✧★➪

❨ ✵✩ ✤

✥
✺

✦➻

➩✸

✪
✗✟☞✩ ➭ →

✜

✪

➫

❨ ✣✩ ✤ →

✥
✜✺

✽➻
☞✏✑ ➭ ✗✟☞ ➭ ✧★➪

❨ ✩✩ ✤
✜

✦

✥
✜✺

✪➻
☞✏✑✩ ➭ ✧✩★➪

❨ ✫♠❵ ✤ ✭→✜✮♠❨ ♠↕❵ ✬❥✣❥✩✯✣✯✩✰❥✣❥✩❏✴✻

✤ ✭→✜✮✼✫✾❀✫✾❁✬❥✩❥✣✯✩✯✣✰❥✩❥✣❏✴✻❃ ❵♠❄✵ ✤

✥
✦➻

✪❅ ❑ ✜
❨ ♠❵ ✧

✫★♠➪

❃
✾
♠◗❄♠ ✤ ✭→✜✮

♠✫♠◗❃
✾
♠❄♠◗ ✤ ❃

✾
✫♠❄✫♠◗ ❃ ✣✵❄✵ ✤ ✗✟☞ ➭ ❃

✣❱✩
✣❱✩❄✣❱✩ ✤ ✗✟☞

➭

✪

❃
✣❱✩
✣❱✩❄✫✣❱✩ ✤ → ☞✏✑

➭

✪

❃ ✣✣❄✣ ✤
✜ ❑ ✗✟☞ ➭

✪

❃ ✣✣❄✵ ✤ →
☞✏✑ ➭
❲
✪

❃ ✣✣❄✫✣ ✤
✜ → ✗✟☞ ➭

✪

❃
❳❱✩
❳❱✩❄❳❱✩ ✤

✜ ❑ ✗✟☞ ➭

✪
✗✟☞
➭

✪

❃
❳❱✩
❳❱✩❄✣❱✩ ✤ →

❲
✸
✜ ❑ ✗✟☞ ➭

✪
☞✏✑
➭

✪

❃
❳❱✩
❳❱✩❄✫✣❱✩ ✤

❲
✸
✜ → ✗✟☞ ➭

✪
✗✟☞
➭

✪

❃
❳❱✩
❳❱✩❄✫❳❱✩ ✤ →

✜ → ✗✟☞ ➭

✪
☞✏✑
➭

✪

❃
❳❱✩
✣❱✩❄✣❱✩ ✤

✸ ✗✟☞ ➭ → ✜

✪
✗✟☞
➭

✪

❃
❳❱✩
✣❱✩❄✫✣❱✩ ✤ →

✸ ✗✟☞ ➭ ❑ ✜

✪
☞✏✑
➭

✪

❃ ✩✩❄✩ ✤
➩✜ ❑ ✗✟☞ ➭

✪

➫✩

❃ ✩✩❄✣ ✤ →
✜ ❑ ✗✟☞ ➭

✪
☞✏✑ ➭

❃ ✩✩❄✵ ✤

❲
❩

✦
☞✏✑✩ ➭

❃ ✩✩❄✫✣ ✤ →
✜ → ✗✟☞ ➭

✪
☞✏✑ ➭

❃ ✩✩❄✫✩ ✤
➩✜ → ✗✟☞ ➭

✪

➫✩

❃ ✩✣❄✣ ✤
✜ ❑ ✗✟☞ ➭

✪
✭✪ ✗✟☞ ➭ → ✜✮

❃ ✩✣❄✵ ✤ →

✥
✸

✪
☞✏✑ ➭ ✗✟☞ ➭

❃ ✩✣❄✫✣ ✤
✜ → ✗✟☞ ➭

✪
✭✪ ✗✟☞ ➭ ❑ ✜✮ ❃ ✩✵❄✵ ✤

➩✸

✪
✗✟☞✩ ➭ →

✜

✪

➫

❬❭❪❫❴❦ ✇①③④✿ ⑤⑥✡ ☞✏❣✑ ✗✟✑✈✡✑✠✏✟✑ ✏☞ ✠⑥✌✠ ✟❢ ⑦✏❣✑✡✍ ✭⑧✖⑨⑩❶ ❷❸✔⑨✖②✙ ☛✗✌✓✡❹✏✗ ❺✍✡☞☞✙ ✞✡❻ ❼✟✍❽✙ ✜❾✺❾✮✙ ✌❿☞✟ ✉☞✡✓ ✒➀ ➁✟✑✓✟✑ ✌✑✓ ➂⑥✟✍✠❿✡➀ ✭❷❸✔
❷❸✔⑨✖② ⑨➃ ➄➅⑨➆➇➈ ➉❶✔➈➅✖➊✙ ➁✌❹✒✍✏✓❣✡ ➋✑✏✈✢ ❺✍✡☞☞✙ ✞✡❻ ❼✟✍❽✙ ✜❾✺✸✮✙ ➌✟☞✡ ✭➍➎✔➆✔➏➅➊✖② ❷❸✔⑨✖② ⑨➃ ➄➏✛⑩➎➊✖ ➐⑨➆✔➏➅⑩➆✙ ⑦✏❿✡➀✙ ✞✡❻ ❼✟✍❽✙ ✜❾✺➑✮✙
✌✑✓ ➁✟⑥✡✑ ✭❷➊➒➎✔➓ ⑨➃ ➅❸✔ ➔➎✔➒➓➈❸➣⑧⑨✖↔➊➏ ➔⑨✔➙➈➇✔➏➅➓✙ ✞✟✍✠⑥ ☛❹✡✍✏✗✌✑ ➌✟✗❽❻✡❿❿ ➂✗✏✡✑✗✡ ➁✡✑✠✡✍✙ ⑤⑥✟✉☞✌✑✓ ➛✌❽☞✙ ➁✌❿✏❢✢✙ ✜❾➑✦✮✢

Figure 6: Reprodu
tion of the table of Clebs
h-Gordon Coe�
ients from Ref. [25℄.
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7.4 Comment: Appli
ation to the three spin-1/2 parti
le system

Let's try applying this to the more 
ompli
ated problem in Homework 3: three spin-

1
2 parti
les. We 
an

only begin the 
omputation, as the se
ond major step involves a more general version of the Clebs
h-Gordon

Coe�
ients.

The highest state we 
an get is |+++〉. This state has jmax = j1 + j2 + j3 = 3
2 and the maximum

z-proje
tion. Thus we identify:

∣

∣

∣

∣

3

2
,
3

2

〉

= |+++〉 .

We then apply the lowering operator to �nd the next state in this 
olumn:

J− |3/2, 3/2〉 = ~

√

(3/2 + 3/2)(3/2− 3/2 + 1) |3/2, 1/2〉
= ~

√
3 |3/2, 1/2〉 .

Also,

J− |+++〉 = (J1− + J2− + J3−) |+++〉
= ~ |−++〉+ ~ |+−+〉+ ~ |++−〉 .

Combining this, we learn

|3/2, 1/2〉 = 1√
3
(|−++〉+ |+−+〉+ |++−〉) .

Continuing, we 
on�rm the other states:

|3/2,−1/2〉 =
1√
3
(|− −+〉+ |−+−〉+ |+−−〉)

|3/2,−3/2〉 = |− − −〉

How do we then get to the next 
olumns of states? Well, let's start with �nding jmin. This is determined

from:

jmin = |j1 + j2 − j3| = |j1 − j2 + j3|

whi
h tells us that there are two ways to form the minimum state by 
ombining individual ji quantum
numbers. Well, in that 
olumn we know that we have the top-most state with m = j1 + j2 + j3 − 1 = 1/2.
We know that it will be orthogonal to |3/2, 1/2〉 but will have the same z-proje
tion. It must be normalized
to unity. The produ
t kets that yield m = 1/2 are:

|++−〉 , |+−+〉 |−++〉

We then have to determine the highest state in the next 
olumn. The Clebs
h-Gordon Coe�
ients are

determined for the 
ase where 2 parti
les 
ombine into single-parti
le hybrid states. We have a 3-parti
le


ase. We need a more general version of the Clebs
h-Gordon Coe�
ients.

I won't go through the rest of the 
al
ulation, but merely point the way. We need the Wigner 3-jm

symbols to go to a 3-parti
le system. They are written as:

|jm, j1j2j3〉 =
∑

m1

∑

m2

∑

m3

(

j1 j2 j3
m1 m2 m3

)

|j1m1, j2m2, j3m3〉 .

Many 
omputational frameworks, like Mathemati
a, provide fun
tions to 
al
ulate these for you. They

are related to the Spheri
al Harmoni
s in that they give you the integral of the produ
t of three spheri
al

harmoni
 fun
tions.
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7.5 Parti
le De
ay

The addition of angular momentum is useful not only for �nding the stru
ture of bound states of parti
les;

you 
an also use it to determine the possible de
ay modes of a parti
le, based purely on restri
tions on

angular momentum imposed by 
onservation. For instan
e, we 
an explore how the spin-0 Higgs Boson

might de
ay (while at rest) to various �nal states. We want to �nd out how to express the state |0, 0〉 in
terms of produ
t kets for various possible �nal states, su
h as 2 spin-1/2 parti
les, two spin-1 parti
les, et
.

We 
an begin with the two spin-1/2 parti
le 
ase, and use a table of Clebs
h-Gordon Coe�
ients to

�gure out the answer. We know we want the total-j ket, |0, 0〉, and we want it to de
ay to a pair of spin-1/2

parti
les. For instan
e, how are the angular momenta of a pair of tau leptons, or bottom quarks, arranged

in produ
t ket spa
e when they are produ
ed from a parent spin-0 parti
le? Reading from the table for su
h

a pair,

|0, 0〉 = 1√
2

(∣

∣

∣

∣

1

2
,+

1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

−
∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,+

1

2

〉)

.

We've already seen this, of 
ourse, when trying to 
ompose a new state out of an original pair of spin-1/2

parti
les.

How about the de
ay of the Higgs boson to something like a pair of Z or W bosons, whi
h ea
h have

spin-1? What might this look like? Reading from the table for 1,1 Clebs
h-Gordon Coe�
ients:

|0, 0〉 = 1√
3
(|1,+1〉 |1,−1〉 − |1, 0〉 |1, 0〉+ |1,−1〉 |1,+1〉)

We see that su
h a de
ay is possible, and 
ontains a 
ompli
ated (but apparently uniformly probable)

distribution of polarizations of the spins of the spin-1 parti
les in the �nal state.

Consider the de
ay of a Z-boson to a pair of fermions with spin-1/2. In that 
ase, we have a S = 1
parti
le de
aying into two S = 1/2 parti
les. We 
an write down the relationship between the total-j kets
that des
ribe the possible states of the Z boson and the produ
t kets that des
ribe the possible states of the

individual parti
les in the �nal state,

|1, 1〉 =

∣

∣

∣

∣

1

2
,
1

2

〉 ∣

∣

∣

∣

1

2
,
1

2

〉

|1, 0〉 =
1√
2

(∣

∣

∣

∣

1

2
,
1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

+

∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,
1

2

〉)

|1,−1〉 =

∣

∣

∣

∣

1

2
,−1

2

〉 ∣

∣

∣

∣

1

2
,−1

2

〉

We see that there is a ri
h set of stru
ture in the out
omes of su
h a de
ay. We'll explore this further in

the future.

8 Relativisti
 Quantum Me
hani
s

For the rest of these notes, we will use a standard set of units 
ommon to high-energy parti
le physi
s named

�natural units.� Sin
e we are typi
ally dealing with speeds near that of light and angular momenta that are

at the subatomi
 level, we will adopt the following 
onvention:

~ = 1

c = 1

All speeds and angular momenta are normalized to that of light and the redu
ed Plan
k's Constant, respe
-

tively. Sin
e:

~c ≈ 197MeV · fm,

42



we 
an relate energy and distan
e through Plan
k's 
onstant and the speed of light. Namely:

~c = 1 −→ 1 fm =
1

197
MeV−1.

In this system of units, the S
hroedinger Wave Equation for a free parti
le would be written:

H |ψ〉 =
1

2m
P 2 |ψ〉

i~
∂

∂t
|ψ〉 = − ~

2

2m
∇2 |ψ〉

i
∂

∂t
|ψ〉 = − 1

2m
∇2 |ψ〉

again, keeping in mind that E = i ∂
∂t and

~P = i~~∇.

Remember also that the 
onservation of energy equation looks as follows:

E2 = p2c2 +m2c4,

whi
h simpli�es in natural units to:

E2 = p2 +m2.

The invariant of the above equation is the mass, and so expressing this as an equation in terms of the

invariant and the variable 
omponents (total energy and momentum):

m2 = E2 − p2.

We 
an express energy and momentum as a four-ve
tor:

p = (E, ~p) ≡ pµ.

To 
ompute the square of this four-ve
tor and re
over the invariant:

p
2 = m2,

we need to introdu
e a matrix in between the produ
t of the two ve
tors that introdu
es the sign �ip. We


an see what this must look like:

m2 = p
2 =

[

E px py pz
]









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















E
px
py
pz









= E2 − p2.

We refer to pµ (the 
olumn ve
tor, in this 
ase) as the 
ontravariant ve
tor and pν =
∑

ν pνg
µν

as the


ovariant ve
tor, the produ
t of the row ve
tor with this matrix, gµν . This new 4x4 matrix is known as �the

metri
� - it transforms 
ovariant into 
ontravariant ve
tors (and vi
e versa). If you want to learn more about

all of this, dig a bit into general relativity (whi
h relies on this 
on
ept entirely). Contravariant ve
tors

transform in the same way as the 
oordinates in a 
oordinate system, while 
ovariant ve
tors transform the

opposite way of the 
oordinates (the same way that the 
oordinate axes would 
hange - they �
o-vary� with

the axes under a transformation of the 
oordinate system).
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8.1 The Dira
 Equation

The S
hroedinger Wave Equation is an in
omplete des
ription of nature in several ways:

• It does not in
orporate the postulates of spe
ial relativity (for instan
e, its expression of energy 
on-

servation is expli
itly 
lassi
al, ignoring internal energy).

• It failes to re
ognize that the potentials themselves may be quantized (as one might expe
t sin
e photons

are invisible units that transmit the ele
tromagneti
 for
e, yet nowhere does the photon appear in the

SWE).

We 
an resolve the �rst but not the se
ond in this le
ture series. Resolving the �rst will already be su�
ient

to 
ome to a 
omplete, quantum understanding of spin. Spin has so far been an ad ho
 two-state phenomenon

that we have added by hand in the SWE. We will now step ba
k to �rst prin
iples (energy 
onservation and

the spe
ial theory of relativity) and derive the 
orre
t, relativisti
 wave equation.

Paul Adrian Mauri
e Dira
 derived this equation and his 
omplete work was published in 1932 [20℄.

However, the derivation of the Dira
 Equation o

urred in 1928. We will derive this equation and determine

the form of its solutions, 
onsidering a �free parti
le� 
ase (as Dira
 did).

The spe
ial relativisti
 expression of energy 
onservation is not a linear equation; it is a quadrati
 equa-

tion:

E2 = m2 + |~p|2

whi
h admits both positive and negative energy solutions. Dira
 sought a LINEAR expression of the same

form, to avoid this problem. That linear expression would then serve the role of the basis of a relativisti
s

wave equation, akin to the SWE:

H |ψ〉 = E |ψ〉 (free parti
le 
ase).

We 
an begin with the hypothesis that:

H |ψ〉 =
(

~α · ~P + βm
)

|ψ〉 ,

whi
h is a guess at a linear equation that now in
ludes internal energy (mass). We must be able to re
over

from this the spe
ial relativisti
 expression of energy 
onservation (whi
h is the 
orre
t expression, after all).

Thus we must �nd that:

H2 |ψ〉 =
(

~P 2 +m2
)

|ψ〉 .

These two equations together represent the Dira
 Equation; both must hold to be true, in order to marry

the SWE with relativity.

We 
an press forward and determine how this equation des
ribes parti
les absent external in�uen
es. We

need to determine these unknown 
oe�
ients - ~αand β. Algebrai
ally:

H2 |ψ〉 = (~α· ~P + βm)(~α · ~P + βm) |ψ〉

It is 
onvenient to employ Einstein Summation Notation for the 
ontinued working of this equation. In

Einstein Summation Notation, any repeated index that appears in an equation represents and impli
it sum

over that index. So, instead of writing:

~α · ~P =
3
∑

i=0

αiPi

we write

~α · ~P = αiPi
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and imply that the sum must be taken over all values of i. If we adopt this notation, we 
an resume in a

more simple and approa
hable way the squaring of terms we have just undertaken:

H2 |ψ〉 = (αiPi + βm)(αjPj + βm) |ψ〉
=

(

α2
iP

2
i + (αiαj + αjαi)PiPj + (αiβ + βαi)Pim+ β2m2

)

|ψ〉 .

We already see something quite interesting here, writing out all the unique terms:

• The unknown 
oe�
ients 
annot be numbers. Why? Be
ause in order for the above equation to mat
h

the relativisti
 expe
ation,

H2 |ψ〉 = (P 2 +m2) |ψ〉 ,

it must be true that αiαj + αjαi = 0 and αiβ + βαi = 0. These 
oe�
ien
ts must anti-
ommute.

Numbers don't anti-
ommute. These obje
ts must be, at minimum, matri
es (or, in a general language,

tensors).

• The square of these 
oe�
ients must yield the identity:

α2
i = I and β2 = I.

Again, this is to satisfy the requirement that squaring the Hamiltonian must yield and expression for

energy 
onservation 
onsistent with spe
ial relativity.

We have 
ertainly en
ountered obje
ts that anti-
ommute like this, with these rules: the Pauli Spin Matri
es.

You explored some of these properties on your �rst homework. That e�ort was not in vain.

8.1.1 The Coe�
ients of the Dira
 Equation

We are left to determine the exa
t form of these 
oe�
ients, given the above 
onstraints from spe
ial

relativity. In fa
t, going a bit further, one will �nd that these matri
es must satisfy the following additional


onstraints:

• They must be Hermitian.

• They must be tra
eless.

• They must be of even dimensionality (2x2, 4x4, 6x6, et
.)

• They must have eigenvalues of ±1

The minimum dimension matri
es that satisfy all four of these requirements are 4x4. The 
hoi
e of the

matri
 representation is not unique, but we will employ the Dira
-Pauli representation:

~α =

[

0 ~σ
~σ 0

]

β =

[

I 0
0 −I

]

.

The physi
s should only depend on the properties of the matri
es and not their spe
i�
 representations.

8.1.2 The Solutions to the Dira
 Equation

We see already that the solutions to this equation, |ψ〉, must be represented in matrix notation minimally

by a 4-row 
olumn-ve
tor. This solution is referred to as a Dira
 Spinor. We have four solutions for ea
h

�parti
le� for this equation . . . a bounty of solutions, whose physi
al meaning needs to be understood.
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8.1.3 The Covariant Form of the Dira
 Equation

We have arrived at a form for the Dira
 Equation:

H |ψ〉 = i~
∂

∂t
|ψ〉 =

([

0 ~σ
~σ 0

]

· i~+
[

I 0
0 −I

]

m

)

|ψ〉 .

It is useful to write this in another form. Multiplying from the left by β:

iβ
∂

∂t
|ψ〉 = −iβ~α · ~∇ |ψ〉+m |ψ〉

[

i

(

β
∂

∂t
+ β~α · ~∇

)

−m

]

|ψ〉 = 0

The operator on the left-most side of the above equation looks like the produ
t of two four-ve
tors. One of

the four-ve
tors is one 
ontaining the partial derivatives over spa
e and time:

∂µ =

(

∂

∂t
, ~∇
)

while the other is a four-ve
tor of matri
es is

γµ = (β, β~α)

The above form is known as the 
ovariant form of the Dira
 Equation, and 
an be simply written as:

[iγµ∂µ −m] |ψ〉 = 0.

The solutions to this equation will be the wave fun
tions we seek. There are four 
omponents to the wave

fun
tion; this equation 
an be understood to be a set of FOUR di�erential equations that 
ouple the four


omponents of a single 
olumn ve
tor. This is most easily seen by writing this as:

4
∑

k=1

[

∑

µ

i (γµ)jk ∂µ −mδjk

]

|ψk〉 = 0.

8.2 Solutions of the Dira
 Equation

We 
an now pro
eed to solve the eigenve
tor and eigenvalue problem of the Dira
 Equation. We 
an guess

at the form of the solutions, whi
h will look mu
h like the old plane-wave solutions of the SWE but now

with an unknown 4-
omponent 
olumn matrix atta
hed:

|ψ〉 = u(p)e−ip·x

where p is a four-ve
tor, p = (E, px, py, pz), as is x = (t, x, y, z). The obje
t u(p) is the unknown four-


omponent spinor whose form we need to determine. If we substitute this solution form into the Dira


Equation:

[iγµ∂µ −m]u(p)e−ip·x = 0
[

iγµ(∂µ(u(p)e
−ip·x))−mu(p)e−ip·x] = 0

[

iγµu(p)(∂µ(−ip · x))e−ip·x −mu(p)e−ip·x] = 0
[

iγµu(p)(−ipµ)e−ip·x −mu(p)e−ip·x] = 0
[

iγµ(−ipµ)u(p)e−ip·x −mu(p)e−ip·x] = 0

[γµpµ −m]u(p) = 0
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It is 
ommon to denote 
ovariant produ
ts of gamma matri
es with other matri
es or ve
tors as:

6 p = γµpµ.

We 
an then write:

[ 6 p−m]u(p) = 0.

We now want to �nd the solutions to this. This is just an eigenvalue equation, so we already know

that the eigenvalues are ±m. They are masses. We need to identify the eigenve
tors that go with these

eigenvalues. We 
an see this if we take the momentum of the parti
le to be zero (at rest). Then p = 0 and

H u(p) = (~α · ~p+ βm)u(p) = Eu(p)

H u(p) = βmu(p) =

[

mI 0
0 −mI

]

u(p).

This equation yields four eigenvalues: m, m, −m, and −m. That means we have two positive-energy states

and two negative energy states. The eigenve
tors 
an be seen to be:









1
0
0
0









,









0
1
0
0









,









0
0
1
0









,









0
0
0
1









.

The Feynman-Stu
kelburg interpretation of these states is the one 
ommonly adopted in modern pra
ti
e. In

this interpretation, we as
ribe the �rst two eigenstates with E>0 to be the parti
le eigenstates. The se
ond

pair of eigenstates as E>0 antiu-parti
le states, to avoid the problem of negative energies.

If we allow for non-negative momentum, then the eigenvalue equation merely be
omes:

H u(p) =

[

mI ~σ · ~p
~σ · ~p −mI

] [

uA
uB

]

= E

[

uA
uB

]

.

Here, we have split the 4-
omponent 
olumn ve
tor (the overall Dira
 Spinor) into two, two-
omponent

spinors. We then see that:

~σ · ~p uB = (E −m)uA

~σ · ~p uA = (E +m)uB

For the two E>0 solutions, we 
an take:

u
(s)
A = χ(s)

where

χ(1) =

[

1
0

]

, χ(2) =

[

0
1

]

.

We then have only to spe
ify the lower 
omponents of the four-
omponent eigenve
tors by inserting these


hoi
es into the se
ond equation above:

~σ · ~p χ(s) = (E +m)u
(s)
B .

Solving for u
(s)
B we �nd:

u
(s)
B =

~σ · ~p
E +m

χ(s).
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The positive-energy solutions are then:

u(s) = N

(

χ(s)

~σ·~p
E+mχ

(s)

)

, E > 0.

Here, N is the normalization 
onstant.

We 
an repeat this pro
edure for the E<0 solutions. Here, we 
an take:

u
(s)
B = χ(s).

Then:

u
(s)
A =

~σ · ~p
E −m

u
(s)
B = − ~σ · ~p

|E|+m
χ(s).

Thus the negative energy solutions are:

u(s+2) = N

(

− ~σ·~p
|E|+mχ

(s)

χ(s)

)

, E < 0.

8.3 Spin and the Dira
 Equation

We now see where spin 
omes from. Enfor
ing spe
ial relativity as the 
orre
t des
ription of nature at

all velo
ities, we are required to write a wave equation (the Dira
 Equation) that is linear in energy and

momentum but solved minimally only by four-
omponent wave fun
tions. The solutions above tell us the

rest of the story. They are ea
h four-
omponent obje
ts, and so for a single parti
le there are FOUR solutions

to the equation: two are positive-energy, and two are negative-energy (interpreted to mean E>0 anti-parti
le

states). But we see that for the parti
le or the anti-parti
le, there are still TWO solutions. There is an

EXTRA two-fold degenera
y for ea
h parti
le whi
h was not present in the non-relativisti
 SWE. Spin is an

inevitable 
onsequen
e of a universe that obeys the postulates of spe
ial relativity. We are for
ed to have it.

This is amazing.

This also implies something else. Sin
e there is an extra two-fold degenera
y in the solutions, there

must also be one more observable in nature that 
ommutes with both the Hamiltonian and the momentum

operator. The eigenvalues of this additional operator 
an be used to distinguish the states. Just as in the 
ase

of adding angular momentum and having degenera
y in the Sz matrix whi
h is resolved by diagonalizing the

S2
matrix, we have a situation where there is a two-fold degenera
y left in the problem even after working

through the H and P parts of the problem.

A 
ommon 
hoi
e for this additional observable is the following, whi
h you 
an show 
ommutes with H

and P:

~Σ · p̂ =
(

~σ · p̂ 0
0 ~σ · p̂

)

,

where p̂ = ~p/|~p| is a unit ve
tor pointing in the dire
tion of momentum. We 
an multiply this by any 
onstant

we like and preserve the properties of the original matrix. Therefore, we 
an 
hoose to 
onsider:

~S =
1

2
~σ

and we 
an think of this new observable as the proje
tion of spin along the dire
tion of motion of the parti
le:

1

2
~σ · p̂.

This proje
tion is known as �heli
ity.� We 
an see that this proje
tion has TWO possible eigenvalues:

λ =

{

+ 1
2 "positive heli
ity"

− 1
2 "negative heli
ity"
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9 Spin and Parti
le De
ay

In this se
tion, we will explore how angular momentum (in
luding spin) a�e
ts the angular distributions of

�nal-state parti
les after an initial state de
ays. I am indebted to Kent Hornbostel for his insights that led

to the writing of this part of the notes. This is a synthesis of what we have developed so far.

We will begin by understanding the relationship between angular momentum and rotation. We will

then 
onsider what happens if we rotate the �nal states away from, for instan
e, a hypotheti
al z-axis.

By 
onsidering these two pie
es, we will build a toolkit for evaluating angular distributions of �nal-state

parti
les. This 
an be further developed when 
onsidering the full heli
ity formalism for des
ribing parti
le

de
ay and distributions of �nal-state parti
les.

9.1 Angular Momentum and Rotation

We 
an begin by 
onsidering what is means to make a rotation in physi
al spa
e about a parti
ular axis.

Let us 
hoose the axis to be the z-axis. Choosing a point in the x-y plane, marked by (x, y), we 
an imagine

rotating about the z-axis by an angle φ. The result is a new 
oordinate, (x′, y′), whi
h 
an be written in

terms of the old 
oordinate as follows:

x′ = x cosφ− y sinφ

y′ = x sinφ+ y cosφ.

We see that this is merely a matrix operation on a 
olumn ve
tor:

[

x′

y′

]

=

[

cosφ − sinφ
sinφ cosφ

] [

x
y

]

.

The 2x2 matrix is a rotation matrix, des
ribing an arbitrary rotation by φ about the z-axis. We might write

this rotation as:

|x′〉 = U(φ) |x〉 .

What if we were interested in a more general problem - how to represent a very small (in�nitesimal) rotation

of a state around an axis (again, let us 
hoose the z-axis)? For a zero rotation, the rotation matrix is simple:

U(0) = I,

the identity matrix. An in�nitestimal rotation, then, would be a small perturbation on top of the identity

matrix. We 
an write the form of this matrix quite simply in terms of the very small rotation angle, denoted

as δφ,
U(δθ) = I − α δφ.

To get at the form of the matrix added to the identity, we 
an 
onsider the Taylor Expansion of the 
osine

and sine fun
tions:

sin δφ = δφ− 1

3!
δφ3 +

1

5!
δφ5 + ...

cos δφ = 1− 1

2!
δφ2 +

1

4!
δφ4 + ...

and for very small angles (again, in�nitesimal rotations)

sin δφ ≈ δφ

cos δφ ≈ 1.

49



Revisiting our rotation of the spatial 
oordinates:





x′

y′

z′



 =





cos δφ − sin δφ 0
sin δφ cos δφ 0
0 0 1









x
y
z





≈





1 −δφ 0
δφ 1 0
0 0 1









x
y
z





=





x
y
z



− δφ





y
−x
z





= I





x
y
z



− δφ





0 1 0
−1 0 0
0 0 1









x
y
z





This tells us how a pure 
oordinate state would be rotated, and we 
an even �nd the form of α for a

pure-
oordinate rotation. We might then 
onsider what happens to a physi
al state (e.g. a fun
tion), that

depends on these 
oordinates, when a
ted upon by the very same matrix. In this 
ase, 
onsider a state

|ψ(x, y, z)〉 .

We want to determine now the form of the operator that rotates the wave fun
tion by rotating 
oordinates

about the z-axis. We know that:

(I − δφα) |x, y, z〉 = |x− δφ y, y + δφ x〉 .

We want to �nd the transformed wave fun
tion, |ψ′〉, after a
ting with the rotation operator. We 
an write:

|ψ′〉 = (I − δφα) |ψ〉

= (I − δφα)

ˆ +∞

−∞
|x, y, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
(I − δφα) |x, y, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
|x− δφ y, y + δφ x, z〉 〈x, y, z|ψ〉d3x

=

ˆ +∞

−∞
|x′, y′, z′〉 〈x′ + δφ y′, y′ − δφ x′, z′|ψ〉d3x′.

In the last line, we have made the simple variable substitution: x′ = x − δφy, y′ = y + δφx, and z′ = z.
Multiplying from the left with 〈x′, y′, z′|, only one term in the integral survives the inner produ
t and we

�nd:

〈x′, y′, z′|ψ′〉 = 〈x′, y′, z′|(I − δφα)|ψ〉 = 〈x′ + δφ y′, y′ − δφ x′, z′|ψ〉.

We 
an identify ψ(x, y, z) = 〈x, y, z|ψ〉 and ψ(x+ δφ y, y− δφ x, z) = 〈x+ δφ y, y− δφ x, z|ψ〉 (sin
e primes
appear on the 
oordinates on both sides of the above equation, we 
an merely drop them for 
onvenien
e).

The last step we need in order to identify our mystery matrix is to simply Taylor Expand the wave

fun
tion about the small added pie
es on ea
h of the x and y 
oordinates, yδφ and xδφ:

〈x, y, z|(I − δφα)|ψ〉 = ψ(x+ δφ y, y − δφ x, z)
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= ψ(x, y, z) +
∂ψ

∂x
(δφ y) +

∂ψ

∂y
(−δφ x) + ...

≈ ψ(x, y, z) +
∂ψ

∂x
(δφ y) +

∂ψ

∂y
(−δφ x)

= ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ.

We are nearly there. Writing out the left side of the above equation and relating the two sides:

〈x, y, z|(I − δφα)|ψ〉 ≈ ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ

ψ(x, y, z)− δφ〈x, y, z|α|ψ〉 ≈ ψ(x, y, z)− δφ

(

x
∂

∂y
− y

∂

∂x

)

ψ.

We thus �nd that:

α =

(

x
∂

∂y
− y

∂

∂x

)

in the 
oordinate basis. This looks suspi
iously like

Lz = −i~
(

x
∂

∂y
− y

∂

∂x

)

and so we merely make the identity that:

α =
i

~
Lz.

We have arrived at the 
on
lusion that the generator of in�nitesimal rotations of the wave fun
tion, about

the z-axis, is just the Lz angular momentum operator. An in�nitesimal rotation about the z-axis is then

written:

Uz(δφ) = I − δφ
i

~
Lz.

What if we then make a su

ession of N in�nitesimal rotations, ea
h of the same size, δφ, su
h that:

N · δφ = φ,

where φ is a �nite rotation about the z-axis? This would be the same as applying the rotation operator to

the state N su

essive times:

(

I − φ

N

i

~
Lz

)(

I − φ

N

i

~
Lz

)(

I − φ

N

i

~
Lz

)

...

(

I − φ

N

i

~
Lz

)

ψ(x, y, z).

In the limit that N → ∞,

lim
N→∞

(

I − φ

N

i

~
Lz

)N

= e−iφLz/~.

We 
an then write that

Uz(φ) = e−iφLz/~.

In general, the rotation matrix in total angular momentum spa
e that rotates one state of |j,m〉 into
another is given by

U = e−iθ(θ̂· ~J)/~,

where the angle θ is a general angle (this 
ould be de
omposed into Euler Angles, for instan
e, �rst rotating

away from an axis of 
hoi
e and then rotating around the new dire
tion).
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Figure 7: A depi
tion of the de
ay of a spin-1 parti
le (left) into a pair of spin-1/2 parti
les (right).The

z-axis has been 
onveniently 
hosen to be the de
ay axis. The produ
t kets in the �nal state have positive

and negative heli
ities for parti
le 1 and parti
le 2, respe
tively. Remember - on
e we have 
hosen the z-axis

as our axis of quantizaton, we 
annot know where

~S points; we 
an only know that the initial state is in a

de�nite z-proje
tion of its spin. The above pi
ture is quite 
lassi
al, but 
an aid in thinking.

9.2 Angular Distributions of Final-State Parti
les

We are now ready to think about how to assemble our pie
es:

• We have seen how to write states of total angular momentum in terms of produ
t kets over the individual

parti
les that 
ompose the total state

• We have seen the form that general rotations take, so we are in prin
iple equipped to take a state of

total angular momentum (�total-j�) and rotate it (and, 
onsequently, the parti
les that 
ompose it)

about some axis.

• We re
ognize that in fully relativisti
 quantumme
hani
s, we have to 
onsider three angular-momentum-

related quantum numbers related to internal angular momentum (�spin�): the total angular momentum

quantum number, j, the proje
tion along the z-axis, m, and the proje
tion of spin along the dire
tion

of motion (�heli
ity�), λ.

Using these pie
es, we 
an probe the angular distributions of parti
les resulting from the de
ay of a total-j

state.

9.2.1 Example: the de
ay of a spin-1 parti
le into two spin-

1
2 parti
les

Consider a spin-1 parti
le, at rest, that spontaneously de
ays to a pair of spin-1/2 parti
les (Fig. 7). Let us

prepare it (produ
e it) su
h that its spin proje
ts along the positive z-dire
tion with m = 1. Let us re
all
how we wrote this total-j state of spin-1 in terms of the produ
t kets:

|1, 1〉 = |++〉 .
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We need to take the heli
ity quantum number into a

ount, to be fully relativisti
 (as we learned from the

Dira
 Equation. We 
an then label states:

|j,m, λ〉

and write the above state of total-j as

|1, 1, 1〉

It is 
onvention to 
hoose, for a parti
le at rest, the heli
ity to point along the positive z-dire
tion - one

then 
an boost the parti
le along the z-axis and rotate its momentum ve
tor to a
hieve any other state of

motion while preserving its heli
ity. The �nal state (a pair of spin-1/2 parti
les) may have any of a number

of heli
ity quantum numbers available to them, depending on the angle of de
ay with respe
t to the z-axis

and the spin ve
tor of the parent. In the 
ase depi
ted in Fig. 7, only one heli
ity state is allowed, and we


an denote it |↑↓〉(or |↓↑〉if we swapped parti
le 1 and 2) in the produ
t-ket notation. However, in general

the de
ay angle 
ould be non-zero, and all we know is the proje
tion of

~S on the z-axis (that is the only

de�nite thing we know about the orientation of

~S), so any of a number of heli
ity states are possible. We


an label them as produ
t kets:

|m1, λ1;m2, λ2〉

and write them down (heli
ity is another two-state problem - so we already know how to represent them in

ket spa
e:

|1〉 = |+ ↑; + ↑〉
|2〉 , |3〉 = |+ ↑; + ↓〉 , |+ ↓; + ↑〉

|4〉 = |+ ↓; + ↓〉 .

This lets us represent the �nal states with their heli
ity quantum numbers.

In general, if we want to des
ribe what happens during the transition from an initial state to a set of �nal

states, we have to do s
attering theory and introdu
e the �S matrix,� whi
h tells us how the states evolve at

all times. We would then 
ompute an amplitude like so,

A ∝
∑

n

〈fn|S |i〉 ,

whi
h is related to a physi
al observable by squaring the amplitude:

|A|2 = A∗A.

Sin
e we are going to square the amplitude anyway, let's 
onsider A∗
. In our spe
i�
 
ase, we are interested

in 
onsidering the de
ay of a parti
le at rest into a pair of parti
les at angle θ with respe
t to the z-axis, and

about the y-axis at an angle φ. We 
an write our amplitude as

A∗
1,1 ∝ 〈1, 1|S |+, λ; +, λ′; Ω(θ, φ)〉

Taking into a

ount the spin proje
tions on the z-axis, the heli
ity states, and the angular orientations of

the �nal-state parti
les. However, we want to determine this angular dependen
e; so all we need to do is

instead think about how we would rotate parti
les of these heli
ities away from θ = φ = 0 (basi
ally, on the

z-axis) to any other orientation. This is a
hieved by applying two su

essive rotations to

|+, λ; +, λ′; Ω(0, 0)〉
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that then rotate this state around the z-axis (by the Euler Angle φ) and then about the y-axis (by the Euler

Angle θ). This takes the form:

U(θ)U(φ) |+, λ; +, λ′; Ω(0, 0)〉 = |+, λ; +, λ′; Ω(φ, θ)〉 .

where we 
an write:

U(θ)U(φ) = U(Ω).

Our amplitude be
omes:

A∗
1,1 ∝ 〈1, 1|S |+, λ; +, λ′; Ω(φ, θ)〉

= 〈1, 1|S U(Ω) |+, λ; +, λ′; Ω(0, 0)〉
=

∑

j,m

〈1, 1|S |j,m〉 〈j,m|U(Ω) |+, λ; +, λ′; Ω(0, 0)〉

= 〈1, 1|S |1, 1〉 〈1, 1|U(Ω) |+, λ; +, λ′; Ω(0, 0)〉 .

The produ
t-ket states have proje
tions of their spin su
h that m = λ1 − λ2, whi
h will then be rotated

by the rotation matrix into the state 〈1, 1| with its de�nite Sz value and de�nite heli
ity. This 
an be

generi
ally written as 〈j′,m′|U(θ, φ) |j, λ1 − λ2〉 , and are given by the �Wigner d-fun
tions,� [26℄ whi
h are

also provided for you in Fig. 6. These have the form:

〈j′,m′|U(Ω) |j, λ1 − λ2〉 = d(θ)jm′,m=λ1−λ2
e−i(λ1−λ2)φ.

The exponential term (and thus dependen
e on the orientation about the z axis) will vanish when you


ompute ea
h 
ontribution to the total amplitudeA2 =
∑

n |An|2; the other angular 
omponent, however,
will remain.

We have three amplitudes that 
ontribute to our sum:

A∗
1,1 ∝ 〈1, 1|S |1, 1, 0〉 〈1, 1| d(θ)11,1e−iφ

so that

A∗
1,1 ∝ 1

2
(1 + cos θ)e−iφ.

Then we have two others:

|1, 0〉 −→ A∗
1,0 ∝ − 1√

2
sin θ

|1,−1〉 −→ A∗
1,−1 ∝ 1

2
(1− cos θ).

If one 
annot distinguish in the �nal state (say, by applying an experimental appratus) the various heli
ity

states of the fermions, then one has to sum over the �nal-state heli
ities (m = 1, 0,−1). The total amplitude
will then be something like:

A2 ∝ ǫ1(1 + cos θ)2 + ǫ2 sin
2 θ + ǫ3(1− cos θ)2. (5)

We 
ould 
hoose some example 
oe�
ients and 
al
ulated the angular dependen
e (amplitude vs. cos θ,
for instan
e). This is shown in Fig. 8. But will we see this in nature? The Stanford Large Dete
tor (SLD)

at the SLAC Laboratory produ
ed Z bosons by 
olliding polarized ele
tron and positron beams. The degree

of polarization 
ould be used to alter the 
oe�
ients of the spin admixture present in the spin-1 Z boson at

the time of its produ
tion. We see that the stru
ture predi
ted by the angular momentum 
onservation in

the de
ay is realized in nature.

Of 
ourse, the details matter. The pre
ise form of the 
oe�
ients and other kinemati
 e�e
ts are only

predi
ted by 
onsidering the full s
attering theory in relativisti
 quantum me
hani
s.
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Figure 8: GNUPlot image of the amplitude-squared vs. cos θ for an arbitrary set of 
oe�
ients in Equation

5.
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Figure 9: Polar angle distribution for Z0
de
ays to e, µ and τ pairs for the 1994-5 SLD run. The asymmetries

in the 1993 data look similar but are less pronoun
ed due to the lower polarization. Figure and 
aption from

Ref. [27℄.
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10 Advan
ed Topi
: Spin and Intera
tions

In this se
tion of the 
ourse, we'll explore the impli
ations for parti
les (with and without spin) intera
ting

with one another. We'll build on what we've developed so far, but we need to add some more pie
es to

enhan
e our toolkit for des
ribing intera
tions.

10.1 Non-Relativisti
 Perturbation Theory and Intera
tions

Consider the general problem of a free parti
le that 
omes into 
onta
t at some point with an external

potential (e.g. experien
es an �intera
tion� via the potential) and then 
ontinues onward. We 
an denote

the initial state by labeling it i and the �nal state by labeling it f .

Consider the purely free-parti
le situation for a se
ond, we 
an write the S
hroedinger Equation as:

H0φn = Enφn

where H0 is the free-parti
le Hamiltonian (

−~
2

2m ∇2) and the φn are the eigenstates of the system (a single

parti
le). We 
onsider all of this happening in some spatial volume, V , and that the eigenstates are normalized
and orthogonal:

ˆ

V

φ∗nφn d
3x = 1

ˆ

V

φ∗mφn d
3x = 0 (m 6= n).

These 
an be summarized in a single equation:

ˆ

V

φ∗mφn d
3x = δmn.

The goal, of 
ourse, is to solve S
hroedinger's Equation now with the parti
le in the presen
e of a potential,

V (~x, t):

(H0 + V (~x, t))ψ = i
dψ

dt
.

If we 
an �nd the eigenstates of the system, in
luding the potential, we should be able to write ea
h in the

spa
e-and-time separable form:

φn(~x, t) = φ(~x)e−iEnt.

Any general solution of the SWE 
an be written in terms of these orthogonal solutions:

ψ =
∑

n

an(t)φn(~x)e
−iEnt.

We don't know the solutions, but we 
an try to sort out these 
oe�
ients, an(t). We insert the above solution

into the SWE:

i
d

dt

[

∑

n

an(t)φn(~x)e
−iEnt

]

=
∑

n

H0

[

an(t)φn(~x)e
−iEnt

]

+
∑

n

V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

.

We know that H0φn(~x) = Enφn(~x), so that:

∑

n

H0

[

an(t)φn(~x)e
−iEnt

]

=
∑

n

(En)an(t)φn(~x)e
−iEnt
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The free-parti
le Hamiltonian a�e
ts no other parts of the wave fun
tion, term-by-term. We 
an also write

the left side by applying the 
hain rule:

i
d

dt

[

∑

n

an(t)φn(~x)e
−iEnt

]

= i

[

∑

n

φn(~x)

(

e−iEnt
d

dt
an(t) + an(t)

(

(−iEn) e
−iEnt

)

)

]

= i

[

∑

n

φn(~x)e
−iEnt

(

d

dt
an(t)− ian(t)En

)

]

= i
∑

n

φn(~x)e
−iEnt

d

dt
an(t) +

∑

n

Enan(t)φn(~x)e−iEnt

We see that some terms 
an
el on the left and right of the SWE, leaving:

i
∑

n

φn(~x)e
−iEnt d

dt
an(t) =

∑

n

V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

.

We want an equation for just the 
oe�
ients, and the way we 
an a
hieve this is to take into a

ount the

orthonormality of the eigenstates. Multiplying from the left by φ∗f (~x):

i
∑

n

φ∗f (~x)φn(~x)e
−iEnt

d

dt
an(t) =

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

and then integrating over the volume, leads to:

i

ˆ

V

φ∗f (~x)φn(~x)e
−iEnt

d

dt
an(t) d

3x =

ˆ

v

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

d3x

whi
h yields:

iδfne
−iEnt

d

dt
an(t) = ie−iEf t

d

dt
af (t) =

ˆ

v

∑

n

φ∗f (~x)V (~x, t)
[

an(t)φn(~x)e
−iEnt

]

d3x.

Finally, we move everything ex
ept the time-derivative to the right-hand side of the equation and get what

we want:

daf (t)

dt
= −i

∑

n

an(t)

ˆ

V

φ∗f (~x)V (~x, t)φn(~x)e
−i(En−Ef )t d3x.

We now have an equation that relates the time-dependen
e of a single 
oe�
ient, af (t), to a sum over

all other 
oe�
ients times integrals of the probability density of an eigenstate intera
ting with the potential

and yielding a proje
tion along the eigenstate φf (~x).
Let us then try to go a little further. Let us simplify the problem by imagining that, at �rst, we prepare

the free parti
le system in an eigenstate of the SWE. Let us 
hoose n = i , where i denotes the initial

eigenstate (one of many from whi
h we 
ould have 
hosen) in whi
h we prepare the system. This then for
es

ai = 1 and am = 0 for m 6= i. Our equation then be
omes:

daf
dt

= −i
ˆ

V

φ∗f (~x)V (~x, t)φi(~x)e
−i(Ei−Ef )t d3x.

Let us further imagine that over a period of time, T , the free-parti
le travels, then intera
ts via V (~x, t), and
then exits in its �nal-state. We 
an 
onsider the 
ase of a �nearly free parti
les� as a small �perturbation� to

the purely free-parti
le s
enario. That is, 
onsider a time spent in the potential that is:

• transient - the time period spent inside the potential, δt << T .
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• weak - the potential strength itself is very small in magnitude

We 
an then see what happens. Imagine that the potential intera
tion o

urs as time t = 0, with δt << T .
The parti
le is sent in for the intera
tion at time t = −T/2 and 
on
ludes its journey in its �nal state at

time t = T/2. This allows us to assume that the initial 
onditions essentially hold at all times, sin
e the

in�uen
e of the potential will be small. We 
an �nd the 
oe�
ient at any time t by integrating the above

equation from −T/2 to an arbitary time, t , where t ≤ T/2:

an = −i
ˆ t

−T/2

ˆ

V

φ∗f (~x)V (~x, t)φi(~x)e
−i(Ei−Ef )t d3x dt.

We 
an identify the spa
e-time volume element, d4x = d3x dt. This is 
onvenient for later. We are spe
i�
ally

interested in the 
oe�
ient at the time T/2, when the intera
tion has long-
eased. This spe
i�
 value of the


oe�
ient is denoted:

Tfi ≡ af (T/2) = −i
ˆ +T/2

−T/2

ˆ

V

[

φ∗f (~x)e
iEf t

]

V (~x, t)
[

φi(~x)e
−iEit

]

d3x dt.

This represents an integral over all relevant spa
e and time points in the problem. We 
an then write the

above 
oe�
ient in the 
ompa
t format:

Tfi = −i
ˆ

[

ψ∗
f (~x, t)V (~x, t)ψi(~x, t)

]

d4x.

This is only a good approximation if af << 1, whi
h was assumed in the above 
al
ulations (we 
an 
he
k

the 
orre
tion to this assumption later).

You 
an show that the above quantity, while temptingly assumed to be related to the probability for the

transition from the initial state to the �nal state, is not physi
ally meaningful as su
h. However, a slight

rede�nition of the above yields the physi
ally meaningful quantity.

If we 
onsider a time-independent potential, V (~x, t) → V (~x), we 
an write:

Tfi = −i
[
ˆ

φ∗fV φi d
3x

] [
ˆ +∞

−∞
e−i(Ei−Ef )t dt

]

.

The time integral is just the Dira
 Delta Fun
tion:

δ(a− b) ≡ 1

2π

ˆ

eix(a−b)dx

so that

Tfi = −2πi

[
ˆ

φ∗fV φi d
3x

]

δ(Ef − Ei).

we 
an then de�ne:

W = lim
T→∞

|Tfi|2
T

whi
h is the probability per unit time of transitioning from the initial to the �nal state via this potential.

Re
alling that |Tfi|2 = T ∗
fiTfi , de�ning Vfi =

´

φ∗fV φi d
4x, and remembering that the square of a delta

fun
tion is just a delta fun
tion,

W = lim
T→∞

[

1

T

]
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11 The Heli
ity Formalism (Roberto Vega)

This part of the le
ture is 
ontributed by Prof. Roberto Vega, and based on his notes and le
ture.

Consider a parti
le, labelled α, de
aying into two parti
les, 1 and 2. If you know the spin of the parent,

and you know the spin of the �nal-state parti
les - say, S1 = 0 and S2 = 1
2 - then already that information

lets you know about the outgoing angular distribution of parti
les will look like. This is true even without

knowing exa
tly the Hamiltonian. You need only know the angular momentum, that it's 
onserved, and you


an pro
eed.

Generally speaking, for this 
ase, you get a superposition of terms like

dY 0
1 χ1/2,1/2 + cY −1

1 χ1/2,−1/2 + bY 0
0 χ1/2,1/2.

You 
an then determine from these fun
tions the possible angular distributions. This is the 
ommon pro
e-

dure.

The advantage of this pro
edure is that the angular momentum is de�ned in the rest frame of the parent.

However, you also know the spin states in the rest frame of the daughters. You have to shu�e between the

systems by rotation. This is tedious, however. If you want to 
onsider polarization e�e
ts, this is not a


onvenient method.

This is why we use �the heli
ity formalism.� It is based on the observation that the heli
ity operator, the

proje
tion of spin in the dire
tion of motion,

~S · p̂ = ~J · p̂,


ommutes with the momentum and the total angular momentum. That is, sin
e the above relation holds,

[~P , ~J · p̂] = 0 and [Ji, ~J · p̂] = 0
while

[Pi, Jj] 6= 0 and [~P 2, Ji] 6= 0.

The eigenvalue asso
iated with the operator is what is meant by �heli
ity.� Sin
e we 
an 
hoose any dire
tion

to be the z-axis along whi
h we quantize angular momentum proje
tion, it is 
onvenient to 
hoose the

dire
tion of motion, p̂ = ẑ.
Thanks to 
ommutation, we see that we have two independent sets of basis ve
tors. One set 
an be

labeled with the eigenvalues of the momentum operator,

~P , and by the eigenvalues of the heli
ity operator.

These are �plane-wave heli
ity states�:

|p, θ, φ;λ〉 .
The other, we 
an label with the eigenvalues |~P |, J2

, Jz, and the heli
ity operator:

|j,m, |p|;λ〉 .

This is the �spheri
al wave heli
ity basis.� Also, if we 
onsider the �nal-state parti
les from the de
ay example

above, ea
h is also des
ribable in its own heli
ity basis.

The heli
ity formalism is one that labels the states using either of these two basis sets. Why is this

advantageous? Be
ause the heli
ity operator is invariant under Lorentz boosts along the dire
tion of motion.

We 
an work in any frame; for instan
e, we 
an 
hoose to start in the 
enter-of-mass frame, and then

boost, and out results still des
ribe the physi
s in other frames. This formalism applies equally well to both

massive and massless parti
les. Heli
ity is invariant for massive and massless parti
les. In the other approa
h

- labeling by the spin and orbital angular momentum - we have to treat massless parti
les spe
ially (they


annot be at rest - we 
annot use the rest frame). In the Heli
ity Formalism, you 
an deal with total angular

momentum, and not worry about the details of orbital angular momentum. As a bonus, heli
ity amplitudes

for s
attering give us a way of easily writing down the polarization e�e
ts in a s
attering system.

What is the general idea? The idea is that we have a s
attering:

α→ 1 + 2.
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Here, α has a well-de�ned J and M - the total angular momentum and its proje
tion in the z-dire
tion.

This is just a de
ay. We 
an write the amplitude for this

A = 〈~p1~p2;λ1λ2|T |JM〉,

where T = e−(i/~)Ht
is an operator that evolves the states overall times (see the earlier se
tion on s
attering).

T is a s
alar,

[T, Ji] = [H, Ji] = 0,

sin
e T is just a series whose terms 
ontain powers of the Hamiltonian, and the Hamiltonian 
ommutes

with the angular momentum operator for rotationally invariant systems (whi
h is what we are 
onsidering

througout these notes - systems where angular momentum is 
onserved and whi
h are thus rotationally

invariant). We 
an then expand the above amplitude in any other basis we like. For instan
e, we 
an write

it in the basis of total-j states:

A =
∑

j′,m′

〈~p1~p2;λ1λ2|j′m′〉〈j′m′|T |JM〉.

Sin
e T is a s
alar, we 
an write this matrix element using the Wigner-E
khart Theorem:

〈j′m′|T |JM〉 = 〈j′m′|00JM〉〈|~p|, j, λ|T |J〉 = δMm′,Jj′〈|~p|, j, λ|T |J〉 ≡ Tλ1λ2
.

whi
h has just a Clebs
h-Gordon Coe�
ient relating the two bases to one another. This Clebs
h-Gordon

Coe�
ient in this spe
i�
 
ase is just a delta fun
tion - it vanishes if m′ 6= M and j′ 6= J . It is also

independent of the index, m. We 
an label it any way we like. The other term:

〈~p1~p2;λ1λ2|j′m′〉 ≡ DJ
Mλ(θ, φ).

So in the end, we just have:

A = DJ
Mλ(θ, φ)Tλ1λ2

.

where λ = λ1 − λ2.
The hard work of determining the angular dependen
e of the �nal state is let to determining these

�D-matri
es,� whi
h were partially introdu
ed earlier and now will be de�ned more 
arefully.

11.1 Massless and Massive Parti
les

For a massive parti
le,

λ = s, s− 1, .....,−s.

The heli
ity states for a 
omplete basis:

|~p, λ〉 .

For a massless parti
le, you 
an still de�ne the heli
ity basis. But there is a di�eren
e. Here,

λ = ±s.

The nature of spin for a massless parti
le is quite di�erent for a massless parti
le. Massive parti
les have

spin due to the fa
t that rotations o

ur in the group SU(2). But for massless parti
les, rotations involve

three parameters - the three Euler Angles, if you like.

Remember that boosts along the dire
tion of motion won't 
hange heli
ity. Boosts in any other dire
tion,

of 
ourse, will 
hange the heli
ity.
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11.2 Rotations - Revisited

The rotation operator that a
ts on kets is unitary, and in general depends on three parameters:

U(Rn̂(ϕ)) = e−iϕn̂· ~J

in natural units. This is a rotation by ϕ about

~J . The three parameters are (1) the rotation angle, and (2,3)
the two parameters that de�ne n̂ - the polar and azimuthal angles. We 
an rotate a state like so:

U(R) |ψ〉 = |ψ′〉 .

These matri
es a
t on other operators via:

UAU † = A′.

For example, for spin-1/2:

~J =
1

2
~σ,

we 
an rewrite the exponential fun
tion in terms of sines and 
osines and �nd:

U(Rn̂(ϕ)) = cos(ϕ/2)− i~σ · n̂ sin(ϕ/2).

The properties of the dot produ
t in the above are:

(n̂ · ~σ)2 = n̂2 = 1

(n̂ · ~σ)3 = n̂ · ~σ.

For spin-1:

U = 1 + (n̂ · ~J)2(cosϕ− 1)− i(n̂ · ~J) sinϕ.

We know that:

σz |1/2, 1/2〉 = + |1/2, 1/2〉

whi
h 
an be written:

ẑ · ~σ |1/2, σ〉 = σ |1/2, σ〉 .

We 
an then rotate:

Uẑ · ~σU †U |1/2, σ〉 = σU |1/2, σ〉

and one 
an then write this out in terms of rotation angles and show that it does, in fa
t, behave exa
tly as

you'd expe
t a rotation operator to behave.

Let's look at this using Euler Angles - �rst rotate about a sele
ted axis, then away from the axis (around

another one), and �nally again about the original axis. In quantum me
hani
s, we 
an write this in a simple

way:

U(α, β, γ) = e−iαJze−iβJye−iγJz .

It's amazing that we 
an de�ne an arbitrary rotation to a new point using these three simple rotations about

just two axes - but it does work.

If S is a rotation, and I take another rotation, R, and 
al
ulate this:

SR(~ψ)S−1 = R(S ~ψ).
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In other words, the rotation on the left is the same as just rotating the ve
tor,

~ψ, �rst by the matrix S and

then de�ning R about the new axis. This 
an be proven, but we will merely employ this theorem.

We 
an then write:

U(~ψ · ~J)NU † = (U(~ψ · ~J)U †)N

= ψiUζJiU
†
ζ = ψiS

−1
ij Jj = ψ′

iJi.

11.3 The Wigner D-Matri
es

The Wigner D-matri
es 
an now merely be written in terms of these rotations. We 
an de�ne these matri
es

as mentioned earlier:

D
(j)
m′m(α, β, γ) = 〈j′m′|U(α, β, γ) |jm〉 .

This works be
ause J2
is a s
alar (we are dealing with rotationally invariant systems!); that is:

UJ2U † = J2.

The above is not true for only Jz . While total angular momentum is 
onserved, 
omponents 
an be 
hanged

under a rotation. We 
an then pro
eed:

D
(j)
mm′(α, β, γ) = e−iαm′

e−iγm 〈j′m′| e−iβJy |jm〉 .

where:

djm′m ≡ 〈j′m′| e−iβJy |jm〉 .

Note that:

〈j′m′| e−iπJy |jm〉 = (−1)j−mδm,−m′ .

We will use this (though you 
an prove it from the rotation operator, if you 
hoose).

For the plane-wave heli
ity states, we 
an write:

|p, λ〉 .

We will de�ne the standard ket as:

|pzλ〉

with all momentum along the z-axis. We 
an then do everything relative to this standard ket. For a massive

parti
le, the standard ket is |0λ〉−at rest, with the spin pointing in the z-dire
tion. For a massless parti
le,

our 
onvention will be to write the standard ket as |κzλ〉, where κ2 = 0. From these standard kets, I


an generate ANY state of momentum by applying a Lorentz Transformation for the massive 
ase; for the

massless 
ase, I have to 
onsider what happens to the parti
le under a parity transformation (sin
e I 
an

never �boost ahead� of the parti
le and thus reverse its dire
tion of motion).

For the standard ket, we 
an start with writing all 
omponents of momentum expli
itly:

|p, 0, 0;λ〉 .

I 
an then rotate this momentum state in any dire
tion to get the general problem of a parti
le with

momentum ~p = (px, py, pz), where the momentum may not lie entirely along one sele
ted axis.
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Let's rotate. Not that rotating about the z-dire
tion does nothing to the state. We have to 
hoose a

�phase 
onvention� for how to handle that rotation, sin
e without a 
onvention its e�e
t is unde�ned. We


hoose the �Ja
ob-Wi
k Phase Convention� where we 
hoose the phase angle ϕ = φ. Rotating the standard
ket:

U(φ, θ, φ) |p, 0, 0;λ〉 = |p, θ, ϕ;λ〉 ,

we 
an get a hint of how this is, in the end, merely doing to be related to the D-fun
tions. We 
an write our

standard ket in terms of the basis states of total-j:

|p, 0, 0;λ〉 =
∑

j,m

Cm
j |p, j,m;λ〉 .

The λ that appears here is th esame on both sides. The only term that survives in the sum is then the one

with m = λ:

|p, 0, 0;λ〉 =
∑

j

Cj |p, j, λ;λ〉

|p, θ, φ;λ〉 =
∑

j

CjU(φ, θ, φ) |p, j, λ;λ〉

=
∑

j

Cj

∑

j′m′

|p, j; ,m′;λ〉 〈p, j′,m′;λ|U(φ, θ, φ) |p, j,m;λ〉

=
∑

j

Cj

∑

j′m′

|p, j; ,m′;λ〉D(j)
m′λ(φ, θ, φ).

We 
annot 
hange the magnitude of

~J in these transformations, so the only terms that survive are those

where j′ = j . Also, it must be that m = m′
- otherwise, the inner produ
t vanishes. Thus:

|p, θ, φ;λ〉 =
∑

j,m

Cj |p, j,m;λ〉D(j)
mλ(φ, θ, φ).

If I then take the inner produ
t:

〈p, j′,m′;λ|p, θ, φ, λ〉 =
∑

j,m

CjD
(j)
mλ(φ, θ, φ)〈p, j′,m′;λ|p, j,m;λ〉 = CjD

(j)
mλ(φ, θ, φ).

It 
an be shown that these D-fun
tions, for integer values of j = ℓ , are proportional to the spheri
al

harmoni
s, Y ℓ
m.

If we then require that:

〈p, θ, φ, λ|p, θ, φ, λ〉 = 1,

it 
an be shown that:

Cj =

√

2j + 1

4π
.

This allows us to write down the angular distributions for a de
ay like α → 1 + 2 . In that 
ase, we just

have two parti
les, ba
k-to-ba
k in the 
enter-of-mass frame of the parent. The net heli
ity of the system is

λ = λ1 − λ2. One only still needs two angles, θ and φ.

11.4 Heli
ity States under Transformations

We now want to explore what happens to heli
ity states under parity and re�e
tion transforms. This is useful;

on
e we know these relations, we 
an simply emply them to write states that relate to su
h transformations.
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