PHYS 7314: Quantum Field Theory I

General information

Time and location:	Tuesdays and Thursdays, 11:00am-12:20pm, 157 Fondren Science
Instructor:	Pavel Nadolsky
E-mail:	nadolsky@smu.edu
Phones:	(214) 768-1756 (office)
Mailbox:	102 Fondren Science
Office:	203 Fondren Science
Office hours:	By appointment, request an appointment at <u>doodle.com/pavelnadolsky (Links to an external site.)Li</u> <u>external site.</u>
Course webpage	Posted on SMU Canvas (<u>courses.smu.edu</u> (<u>Links to an external site.</u>) <u>Links to an external site.</u>). (<u>Links external site.</u>) <u>Links to an external site.</u> To view, enter your 8-digit SMU ID and password.

Textbook, learning objectives, grading, policies

Text	Quantum Field Theory, by Mark Srednicki, 1st Edition
Recommended reading	1. An Introduction to Quantum Field Theory, by G. Sterman
	2. Introduction to Quantum Field Theory, by M. Peskin and D.
and materials	Schroeder
	3. The Quantum Theory of Fields, volumes 1, 2,3
	by Steven Weinberg
	4. <i>Fields</i> , by Warren Siegel (free, <u>hep-th/9912205</u>)
	5. Classical Electromagnetism in a nutshell, by Anupam Garg
	(selected sections)
	6. Simon DeDeo's online course on an <u>Introduction to</u>
	Renormalization
Grading	Your grade will be based on weekly homework problems (70%) and a final project (20%)
	project (50%)
	• Late Homework: 15% off per day for the first four days, or until
	graded (whichever is first).
	Thereafter I'll accept (but won't grade) them at any time for 25% credit.
Homework assignments	In the Assignments folder on the website.

Reading sequence

Plan to read 3-4 chapters per week . Detailed assignments are on the website

- 1. Attempts at relativistic quantum mechanics
- 2. Lorentz invariance
- 3. Canonical quantization of scalar fields
- 4. The spin-statistics theorem
- 5. The LSZ reduction formula
- 6. Path integrals in quantum mechanics
- 7. The path integral for the harmonic oscillator
- 8. The path integral for free field theory
- 9. The path integral for interacting field theory
- 10. Scattering amplitudes and the Feynman rules
- 11. Cross sections and decay rates
- 12. Dimensional analysis with ?=c=1
- 13. The Lehmann-Källén form
- 14. Loop corrections to the propagator
- 15. The one-loop correction in Lehmann-Källén form
- 16. Loop corrections to the vertex
- 17. Other 1PI vertices
- 18. Higher-order corrections and renormalizability
- 19. Perturbation theory to all orders
- 20. Two-particle elastic scattering at one loop
- 21. The quantum action
- 22. Continuous symmetries and conserved currents
- 23. Discrete symmetries: P, T, C, and Z
- 24. Nonabelian symmetries (skip until later)
- 27. Other renormalization schemes
- 28. The renormalization group
- 29. Effective field theory (skip until later)
- 30. Spontaneous symmetry breaking (skip until later)
- 32. Spontaneous breaking of continuous symmetries (skip until later)
- 33. Representations of the Lorentz Group
- 34. Left- and right-handed spinor fields
- 35. Manipulating spinor indices
- 36. Lagrangians for spinor fields
- 37. Canonical quantization of spinor fields I
- 38. Spinor technology
- 39. Canonical quantization of spinor fields II
- 40. Parity, time reversal, and charge conjugation
- 41. LSZ reduction for spin-one-half particles
- 42. The free fermion propagator
- 43. The path integral for fermion fields
- 44. Formal development of fermionic path integrals (skip until later)
- 45. The Feynman rules for Dirac fields
- 46. Spin sums
- 47. Gamma matrix technology
- 48. Spin-averaged cross sections