June 25, 2010

Instructions. Please solve all three problems. You are allowed to use one textbook of your choice, one math reference, and a calculator. Figures for each problem are shown on a separate page. In each solution, state clearly the system of units you are using.

Problem 1. In Bohr's model of a neutral hydrogen atom, a negative charge distribution created by the electron's quantum motion surrounds a pointlike positively charged proton at r=0. The electric potential is given by

$$\varphi(r) = \frac{q}{4\pi\epsilon_0} \frac{e^{-\beta r}}{r} \left(1 + \frac{\beta r}{2} \right),$$

where $\beta = 2/a_0$, and a_0 is Bohr's radius (a known constant). Find the charge density $\rho(\vec{r})$ as a function of distance r from the center of the atom, including at the center r=0. Check that your expression for $\rho(\vec{r})$ reproduces the total charge of the atom, when $\rho(\vec{r})$ is integrated over all space. Find net electric flux through a spherical surface of radius R centered at the atom's nucleus.

Problem 2. A wire loop in the shape of a square with side length ℓ carries current I. The unit vector to the plane of the loop is $\vec{n} = \{n_x, n_y, n_z\}$, and the center of the loop is at the point $M = \{0, y_0, 0\}$. The loop is placed in an external magnetic field with vector potential

 $\vec{A}_K = \frac{\mu_0 K}{4\pi} \ln \left[x^2 + y^2 \right] \hat{z}.$

- 1. Find the magnetic field \vec{B}_K corresponding to \vec{A}_K and sketch its magnetic field lines. How can such magnetic field be created?
- 2. Can a different vector potential \vec{A}_K generate the same field \vec{B}_K ? Explain.
- 3. Find the torque on the loop in the field \vec{B}_K in the dipole approximation.
- 4. Find the energy of interaction of the loop with \vec{B}_K in the dipole approximation.
- 5. Find the magnetic field \vec{B}_I created by the loop at a point $N = \{0, x_0, 0\}$, where $x_0 \gg \ell, y_0.$

The sun is an average star with a mass of 2.0×10^{30} kg. It radiates 3.8×10^{26} W of power. Consider a comet orbitting the sun and composed of spherical, black conducting particles each with radius a and a density of 4000 kg/ m^3 .

1. Calculate the average radiation force exerted by the sun on the particles in the comet.

2. At what value of a does this force equal the force of gravity from the sun? Does this solution for a depend on the radial distance to the sun, r, and why?

Eventually, the sun will exhaust its supply of hydrogen fuel and ultimately transition to a 'white dwarf' stage in which thermonuclear reactions do not occur. It will shrink to a radius of perhaps 10,000 km. A magnetic dipole field can be produced and may vary in strength. Assume this field has a dipole moment of 10^{44} Am² and varies from zero to full magnitude, keeping a constant orientation, with a period of 10 minutes.

3. What fraction of the total power in the magnetic dipole field is radiated within ± 45 degrees of the plane perpendicular to the dipole axis?