

A MINER CHALLENGE: Searching for Double Beta Decay in Xenon 2150 ft Underground in New Mexico

Lisa J. Kaufman University of Maryland October 26, 2009 SMU Physics Seminar

Outline

- Beta decay and the neutrino
- Neutrino mass
- Double beta decay
- Overview of EXO purpose and design
- TPC construction
- EXO-200 at WIPP
- Timeline
- Future plans

A little bit of particle physics...

A little bit of particle physics...

- Three generations of matter
- Three flavors of leptons e, μ, τ
- The neutral leptons are called neutrinos ν_e, ν_μ, ν_τ
- Neutrinos only interact via the weak force

The beginning...

"I'am at present trying to write up the subject of beta rays for my new edition, and I find it the most difficult task in the book..."

Ernest Rutherford to Otto Hahn (1911)

"...there could exist in the nucleus electrically neutral particles, which I shall call neutrons, which have spin ½ and satisfy the exclusion principle... The continuous beta-spectrum would then become understandable..."

Wolfgang Pauli (1929)

"At the present stage of atomic theory, however, we may say that we have no argument... for upholding the energy principle in the case of beta-ray disintegrations, and are even led to the complications and difficulties in trying to do so."

N. Bohr (1930)

Fermi puts it together

W. Pauli

A lightweight neutral particle is emitted along with the e⁻ in betadecay

W. Heisenberg

The nucleus consists only of protons and neutrons

E. Fermi

"... to every transition from neutron to proton is correlated the creation of an electron and a neutrino."

W. Pauli

"I have done a terrible thing, I have postulated a particle that cannot be detected."

E. Fermi, Z. Phys. 88 (1934) 161

Nuclear Beta (B) Decay: The Solution

- Free neutron or neutron in an unstable nucleus is converted to a proton via the weak force
- 2. To conserve energy, an electron and antineutrino are produced in the process Three-Body Final State

 $(N, Z) \rightarrow (N-1, Z+1) + e^- + \overline{\nu}$.

Evidence of Neutrinos

KamLAND - 2000s (reactor vs) Reines - 1956 (reactor vs)

Sources of neutrinos: artificial and natural

Neutrinos have mass!

Oscillation experiments measure Δm^{2} 's, but not the absolute masses!

Dirac and Majorana Neutrinos

	Dirac	Majorana		
Fermion	Particles have charge $f \neq \overline{f}$ (e-, μ -, τ -, quarks)	Particles carry no charge $f = \bar{f}$		
Neutrino	Carries lepton number $v: L = +1, \overline{v}: L = -1$	Cannot carry lepton number		

Is the neutrino its own antiparticle?

Helicity

- Helicity is the projection of the particle spin on the direction of the particle's motion
- Right-handed → motion and spin are along the same direction
- Left-handed → motion and spin are in opposite directions

Dirac and Majorana Neutrinos

Don't we already know that $\nu \neq \overline{\nu}$?

Typical neutrino scattering experiment:

For Dirac neutrinos, the charge of the μ^+ is determined by

Lepton number conservation and the neutrino helicity (weak interaction is 100% left handed). For <u>Majorana neutrinos</u>, the charge of the μ^+ is determined solely by neutrino helicity.

No experiment has been able to tell us which view is correct.

 $0\nu\beta\beta$ $\Delta L = 2$

2v mode: a conventional 2nd order process in Standard Model $\begin{array}{l} \textbf{0} \nu \mbox{ mode:} \\ a \mbox{ hypothetical process} \\ can \mbox{ happen only if:} \\ \textbf{M}_{\nu} \neq \textbf{0}, \mbox{ } v = \overline{\nu} \mbox{ (non-zero Majorana mass)} \end{array}$

Double Beta Decay

	a second-order process only detectable if first
$\begin{bmatrix} 10 \\ 9 \\ -3 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ (MeV) \end{bmatrix} \beta^{-1}$	order beta decay is energetically A=fp36jdden β^{+} β^{-1}

Candidate nuclei with Q>2 MeV Abund. Candidate Q (MeV) (%) ⁴⁸Ca→⁴⁸Ti 4.271 0.187 $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ 2.040 7.8 $^{82}Se \rightarrow ^{82}Kr$ 2.995 9.2 ⁹⁶Zr→⁹⁶Mo 3.350 2.8 $^{100}Mo \rightarrow ^{100}Ru$ 9.6 3.034 ¹¹⁰Pd→¹¹⁰Cd 2.013 11.8 $^{116}Cd \rightarrow ^{116}Sn$ 2.802 7.5 $^{124}Sn \rightarrow ^{124}Te$ 2.228 5.64 $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ 2.533 34.5 $^{136}Xe \rightarrow ^{136}Ba$ 8.9 2.479 ¹⁵⁰Nd→¹⁵⁰Sm 3.367 5.6

Atomic number (Z)

If $0\nu\beta\beta$ is due to light, Majorana neutrinos

$$\langle m_{\beta\beta} \rangle = \left(T_{1/2}^{0\nu\beta\beta} G^{0\nu\beta\beta}(Q,Z) \left| M_{\text{nucl}} \right|^2 \right)^{-1}$$

 $\begin{array}{ll} M_{\mathrm{nucl}} & \mbox{can be calculated within particular} \\ G^{0\nu\beta\beta}(Q,Z) & \mbox{a known phase space factor} \\ \hline T^{0\nu\beta\beta}_{1/2} & \mbox{is the measured quantity [Hz]} \end{array}$

$$\langle m_{\beta\beta}
angle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i e^{i \alpha_i} \right|$$

effective Majorana v mass

[Strumia and Vissani, hep-ph/0606054]

Summed electron energy in units of the kinematic endpoint (Q)

Sensitivity

 $S_{1/2}^{0\nu} \propto \varepsilon \frac{a}{A} \left| \frac{MT}{R\Gamma} \right|^{1/2}$

 ε is efficiency a is isotopic abundance A is atomic mass M is source mass T is time B is background Γ is resolution

To maximize sensitivity:

- •Large mass
- Low background
- •High detection efficiency
- •Good energy resolution

In addition, identification of the daughter isotope would reject most sources of background and confirm double beta decay.

Overview

"EXO is a program aimed at building an enriched xenon double beta decay experiment with a one or more ton ¹³⁶Xe source, with the particular ability to detect the two electrons emitted in the decay in coincidence with the positive identification of the ¹³⁶Ba daughter via optical spectroscopy"

The EXO Collaboration

K. Barry, E. Niner, A. Piepke University of Alabama, Tuscaloosa AL

P. Vogel

California Institute of Technology, Pasadena CA

M. Dixit, K. Graham, C. Green, C. Hagemann, C. Hargrove, E. Rollin, D. Sinclair, V. Strickland

Carleton University, Ottawa ON, Canada M. Moe

University of California, Irvine, Irvine CA

C. Benitez-Medina, S. Cook, W. Fairbank, Jr., K. Hall, B. Mong

Colorado State University, Fort Collins CO

D. Akimov, I. Alexandrov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov,

V. Stekhanov, O. Zeldovich

ITEP Moscow, Russia

B. Aharmim, K. Donato, J. Farine, D. Hallman, U. Wichoski Laurentian University, Sudbury ON, Canada H. Breuer, C. Hall, L.J. Kaufman, D. Leonard, S. Slutsky, Y-R. Yen

University of Maryland, College Park MD K. Kumar, A. Pocar

University of Massachusetts Amherst, Amherst MA

M. Auger, G. Giroux, R. Gornea, F. Juget, G. Lutter, J-L. Vuilleumier, J-M. Vuilleumier

Laboratory for High Energy Physics, Bern, Switzerland

N. Ackerman, M. Breidenbach, R. Conley, W. Craddock,

J. Hodgson, D. Mackay, A. Odian, C. Prescott, P. Rowson,

K. Skarpaas, J. Wodin, L. Yang, S. Zalog

Stanford Linear Accelerator Center (SLAC), Menlo Park CA

L. Bartoszek, R. Cooper, R. DeVoe, M. Dolinski, B. Flatt,

- G. Gratta, M. Green, F. LePort, M. Montero-Diez, R. Neilson,
- A. Reimer-Muller, A. Rivas, K. O'Sullivan, K. Twelker

Stanford University, Stanford CA

FXO-200

EXO-200 is a large LXe TPC with scintillation light readout. It uses a source of 200 kg of enriched xenon (80% ¹³⁶Xe).
 → EXO-200 has no ¹³⁶Ba⁺ identification ←

Goals:

- Look for $0\nu\beta\beta$ decay of ¹³⁶Xe with competitive sensitivity ($T^{0\nu}_{1/2} > 6 \ge 10^{25}$ y, current limit: $T^{0\nu}_{1/2} > 1.2 \ge 10^{24}$ y)

- Measure the standard $2\nu\beta\beta$ decay of ¹³⁶Xe (Q = 2457.8 ± 0.4 keV) and measure its lifetime (best upper limit to date: $T^{2\nu}_{1/2} > 1 \times 10^{22} \text{ y}$

[R. Bernabei et al., Phys. Lett. B 546 (2002) 23]

- Test backgrounds of large LXe detector at ~2000 m.w.e. depth
- Test LXe technology and enrichment on a large scale
- Test TPC components, light readout (518 LAAPDs), and radioactivity

Why Xenon?

Xenon isotopic enrichment is easier: Xe is a gas and ¹³⁶Xe is the heaviest isotope.

- Xenon is "reusable": can be re-purified and recycled into new detector (no crystal growth).
- Monolithic detector: LXe is self shielding, surface contamination minimized.
- Minimal cosmogenic activation: no long lived radioactive isotopes of Xe.

Energy resolution in LXe can be improved: scintillation light + ionization anti-correlation.

... admits a novel coincidence technique: background reduction by Ba daughter tagging.

EXO-200 Detection Scheme

LXe Data Show Anticorrelation between Scintillation and Ionization

Energy resolution: 3.0% @ 570 keV or 1.6% @ $Q(\beta\beta)$

EXO-200

Surrounded by 25 cm Pb shield

Copper Xe Vessel

• Very light (wall thickness 1.5 mm, total weight 15 kg), to minimize material.

• All parts machined under 7 ft of concrete shielding to reduce activation by cosmic rays.

• Different parts are e-beam welded together at Applied Fusion. Construction of the vessel with 55 welds has been completed.

• End caps are TIG welded.

EXO-200 TPC Construction

EXO-200 TPC Construction

Flex cable etched, cut, and potted!

EXO-200 TPC Assembled

al.,arXiv:0709.4524 (NIMA)

EXO-200 TPC Completed and Ready to Ship Underground

Underground Facility for EXO in Carlsbad, NM

Servalory

for double beta decau

4.77×10-3 m-2 s-1 $(3.10 \times 10^{-3} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}, \sim 15 \text{ m}^{-2} \text{ h}^{-1})$

[Esch et al., NIM A 538 (2005) 516]

Underground Facility Waste Isolation Pilot Plant (WIPP) Carlsbad, NM ed States cartment of Energy Waste Isolation Pilot Plant Aerial View of the WIPP site

Rock overburden

Salt

2150 ft (655 m)

Older experimental cavities potentially useable for research

EΧ

EXO

Areas made available for research

> Majorana/LANL SEGA/MEGA

WIPP's Low Background Characteristics The sait formation surrounding WIPP contains extremely low levels of naturally occuring radioactive materials. U-30 ppb Th ~80 ppb K-40 ~170 ppb Rn <7Ba/m

> Waste Disposa Area

200 kg of xenon enriched to 80% = 160 kg of 136 Xe: The most isotope in possession by any $\beta\beta0v$ collaboration

EXO-200 Status 2006

Shipping Clean Rooms to WIPP – June 2007

Shipping Clean Rooms to WIPP – June 2007

Fitting the cleanroom into the "waste hoist" - one $\frac{1}{2}$ " to spare on each side!

Underground Summer 2007

Clean room modules installed on jacks because the salt creeps over time

Module Installation @ WIPP

 Modules transported through the mine using the 20-ton and 41-ton forklifts at WIPP

- Module 1 was 30 tons when transported and will weigh 80 tons when all shielding is in place
- Mod 1 had special subfloor
- All other modules were placed and leveled with respect to Mod 1
- All modules were placed on jack stands with special hydraulic jacks installed for Mod 1. This allows us to keep the clean rooms level even though the salt will move over time.

EXO-200 Installation @WIPP

Cryogenics Systems

Cryogenics systems commissioning underway at WIPP

Xenon System with Full LXe Vessel

servalury,

for double beta decay

EXO-200 Active Scintillation Muon Veto

- •Geometrical placement was optimized by Monte Carlo.
- About 96% muon background rejection is achievable with panel arrangement.
- •To stay within background budget we only need 90% efficiency.

EXO-200 Sensitivity

Case	Mass (ton)	Eff. (%)	Run Time (yr)	σ _E /E @ 2.5MeV (%)	Radioactive Background (events)	T _{1/2} ^{0∨} (yr, 90%CL)	Majorana (eV QRPA	a mass ′) NSM
EXO-200	0.2	70	2	1.6	40	6.4 x 10 ²⁵	0.133 ¹	0.186 ²

1) Rodin, *et. al.*, Nucl. Phys. A **793** (2007) 213-215 2) Caurier, *et. al.*, arXiv:0709.2137v1
$$\label{eq:current_limits} \begin{split} \hline CURRENT \ Limits \\ T_{1/2}^{0\nu\beta\beta} > 1.2\times 10^{24} \ \text{year} \\ T_{1/2}^{2\nu\beta\beta} > 1\times 10^{22} \ \text{year} \end{split}$$

Improves on previous 136 Xe experiments by one order of magnitude and competitive with the best $\beta\beta0v$ experiments in the world.

•EXO-200 will also make the first observation of $\beta\beta2\nu$ in Xe-136.

•If Heidelberg observation claim is correct, EXO-200 will see between 46 and 170 events, on a background of 40 events (5.0 σ to 11.7 σ effect).

Sensitivity to 2v mode

$2\nu\beta\beta$ of ^{136}Xe has never been observed.

	T _{1/2} (yr)	evts/year in EXO-200 (no efficiency applied)
Experimental limit		
Leuscher et al	> 3.6 ·10 ²⁰	<1.3 M
Gavriljuk et al	>8.1·10 ²⁰	<0.6 M
Bernabei et al	>1.0·10 ²²	<48 k
Theoretical prediction [T_{1/2}^{max}]		
QRPA (Staudt et al)	=2.1·10 ²²	=23 k
QRPA (Vogel et al)	=8.4-10 ²⁰	=0.58 M
NSM (Caurier et al)	(=2.1·10 ²¹)	(=0.23 M)

Excellent prospects for detection of the 2v decay mode in EXO-200.

EXO-200 Schedule

- Currently clean rooms, support facilities (UPS, machine shop, Xe, etc) are located underground at WIPP
- Cryogenic liquid and gas systems and controls are being commissioned at WIPP in progress
- ESIII clean room at Stanford: TPC assembly, installation in the Cu Xe vessel, mechanical and electrical testing completed
- Muon Veto tested at Alabama shipped to WIPP in Nov 2008 and installation completed summer 2009
- Detector shipment to WIPP November 2009
- Cooldown and installation in Early 2010
- Engineering run (natural Xe) followed by Physics Run

EXO Sensitivities

Case	Mass (ton)	Eff. (%)	Run Time (yr)	σ _E /E @2.5MeV (%)	2 uetaeta BG (events)	<i>T</i> ^{0ν} _{1/2} (yr) 90%CL	Majorana Mass (meV) QRPA ¹ NSM ²	
Conservative	1	70	5	1.6	0.5 (use 1)	2×10 ²⁷	24	33
Aggressive	10	70	10	1	0.7 (use 1)	4.1×10 ²⁸	5.3	7.3
1) Rodin, et. al., Nucl. Phys. A 793 (2007) 213-215 2) Caurier, et. al., arXiv:0709.2137v1								

