Milestone for Tevatron Higgs Searches: First Observation of Diboson Production in Hadronic Final States

Sasha Pronko Fermilab

Diboson Processes at the Tevatron

Diboson Final States

- Dibosons were discovered in lvlv, lllv, llll, and llvv, modes
 - Small branching ratios, clean signatures, easy to trigger
- "Semileptonic" modes with at least one W/Z→jj
 - ~40% branching fractions, ~1000× backgrounds, difficult to trigger

11/30/09

Recent Tevatron Results with Dibosons

- Dibosons (WW, WZ, and ZZ) were observed in fully leptonic mode
- Dibosons at Tevatron were not previously observed in lvjj or vvjj modes
 - − CDF: 2.4 σ in WZ/WW→lvjj
 - D0: 4.3 σ in WZ/WW \rightarrow lvjj
 - evidence

From Dibosons to Higgs Searches

From Dibosons to Higgs Searches

- HW→vl+bb and HZ→vv+bb are leading channels for light Higgs (M_H<135 GeV/c²) searches at the Tevatron
 - Similar signatures and challenges to WW/WZ→vl+jj and ZZ/WZ→vv+jj
 - Small signal in a large background
 - Test of analysis techniques

- Recent CDF Higgs results for M_H =115 GeV/c²
 - Observed limit
 - HW: $5.3 \times \sigma_{SM}$ in 4.3 fb⁻¹
 - HZ: $6.1 \times \sigma_{SM}$ in 3.6 fb⁻¹

Road to Higgs is paved with Dibosons

Tevatron is Running Very Well!

- Produced in 1 fb⁻¹
 - ≈ 6,200,000 W→lv+X
 - ≈ 2,600,000 Z→vv+X
 - **≈** 5,100 WW→jjlv
 - ≈ 1,300 WZ→jjlv+jjvv
 - ≈ 420 ZZ→vvjj
 - ≈ 64 H→WW*→lvjj??
 - ≈ 33 WH→lvbb ??
 - **≈ 13** ZH→vvbb ??

 $l=e,\mu,\tau; M_{\rm H}=120 \text{ GeV/c}^2$

- ~7 fb⁻¹ per experiment; ~1.9 fb⁻¹ in FY09
- 55-60 pb⁻¹ per week in FY09
- Ramping up speed after this summer shutdown
 - Already ~300 pb⁻¹ since 09/15
- Running in 2011? Expect 10-12 fb⁻¹ per experiment

11/30/09

CDF in Run II

- Multipurpose, classic design
- Operating well
 - 80-90% efficiency
 - Broad physics program
 - QCD, EWK, top,
 B-physics, Higgs searches, new physics searches

How Do You Find Dibosons in jj+MET?

- Strategy
 - Select jj+MET events
 - Sensitive to *Iv* and *vv* decay modes of W and Z
 - Need only Calorimeter & COT (tracking)
 - 10% more data!
 - Maximal use of data to estimate backgrounds
 - Simple but smart analysis techniques
 - Focus on deep understanding of backgrounds
 - It's never late to add multivariate techniques
 - Do it fast!!!

How Do You Find Dibosons in jj+MET?

Challenges

- Need lots of data
 - Analysis is based on 3.5 fb⁻¹ of data
- High efficiency triggers at all luminosities
 - L2 trigger upgrade
- Large backgrounds dominated by QCD multijet events with fake MET and Z/W+jets
 - Sophisticated technique to suppress QCD multijets and estimate systematics
- Extracting small signal

Calorimeter Trigger Upgrade

- Upgraded L2 trigger
 - More sophisticated algorithm (almost same as in offline)
 - Better resolution and turn-on
 - Better performance at high luminosity

Trigger Efficiency

- Use all MET and MET+jets triggers
 - Every bit of extra data counts!
 - Complicates luminosity accounting
- Use $Z \rightarrow \mu\mu$ events (standard candle) with two jets from high P_T triggers to find trigger efficiency
 - Integrated efficiency 96.4% ± 2.2%

11/30/09

Dibosons are Swamped with Backgrounds

Triggered data dominated by QCD events with fake MET

Backgrounds: QCD Multijets

- Huge production rate
 - ~9 orders of magnitude above WW+WZ+ZZ
- Fake MET due to jet energy mis-measurement in the calorimeter
 - Rare fluctuations × huge rate = significant background
- Reject as much as possible
- Use data to model whatever remains

11/30/09

Backgrounds: EWK processes

MET Resolution Model (Metmodel)

- Select events with true MET
 - Calculate MET-significance based on event configuration & known energy resolution
 - Use MET-significance to select with true MET

Validation of Metmodel

• Use $W(\rightarrow e_V)$ +jet data to validate MET-resolution

- Regions dominated by events with fake MET
 - Low MET-significance and small $\Delta \phi$ (jet-MET)

Diboson Candidate Selection: 44,910 events

• Analysis is based on 3.5 fb⁻¹ of data

60	Variable	Cut values
	MET	>60 GeV
20- 0	Jet -1,2 E _T	>25 GeV
300 200 -1 N	Jet EmFr	<0.9
φ 100 04 -3	Jet -1,2 ŋ	<2.0
QCD multijet	$\Delta \phi_{closest}$	>0.4 rad
rejection	MET-significance	>4
	$\Delta R_{lep-jet}$	>0.2
	E ^{EM} /E ^{tot}	0.3-0.85
	M _{jj}	$40 \text{ GeV/c}^2 - 160 \text{ GeV/c}^2$
	Jet timing	<4.5 ns

A Pronko, SMU Video Seminar

Modeling Remaining Multijet Background

MET from neutrinos trkMET & MET aligned

Track MET (trkMET)

- Analogous to MET
- True MET
 - Small
 Δφ(trkMET-MET)

• Fake MET

Large
 Δφ(trkMET-MET)

Mis-measured jet and resulting fake MET

A Pronko, SMU Video Seminar

Modeling Remaining Multijet Background

- Subtract EWK from data in $\Delta \phi$ (trkMET-MET)>1.0 region
- Account for QCD background contribution in peak with dijet MC
- Address MC-data differences in resolution with $Z \rightarrow \mu\mu$ events

Checking Background Model

- Great agreement in distributions sensitive to fake MET
 - MET-significance
 - $\Delta \phi$ (closest)
- EWK background and signal have same shapes

Extracting Diboson Signal

- Fit M_{jj} distribution using three templates
 - EWK, QCD, signal
- Minimize the unbinned extended negative log likelihood (ROOFIT)
- Nuisance parameters in the fit
 - EWK normalization
 - Jet energy scale (JES)
 - QCD shape & normalization
 - Signal normalization

M_{jj} Templates: Multijet Background

- Shape & normalization taken from data in the region Δφ(trkMET-MET)>1.0 after EWK subtraction
- Shape & normalization are constrained in M_{ii} fit
- Uncertainties are driven by extrapolation into Δφ(trkMET-MET)<1.0 region

M_{jj} Templates: EWK Background

- Shapes taken from MC
- Total number of EWK events is unconstrained in fit

Expected 36,906 EWK events

Process	Expected % of sample
Z→vv	28.9
Ζ→ττ	1.0
Z→μμ	0.7
Z→ee	0.0
₩→τν	24.1
W→ev	14.4
W→µv	12.8
tt	0.9
Single top	0.5
Total	82.9

M_{jj} Templates: Signal

Process	Expected % of sample
WW	2.3
WZ	0.7
ZZ	0.3
Total Signal	3.3
EWK	82.9
QCD	13.8

- Shape from MC (Gaussian + polynomial)
- Number of signal events is unconstrained in fit
- Jet energy scale has a Gaussian constraint in fit
 - Gaussian width depends linearly on JES

Expected Signal Significance

- Check with pseudo experiments (PE)
- PE's input from expectations
 - EWK: 36,906
 - QCD: 6,144
 - Signal: 1,480
- Expected mean statistical significance ~6σ

Systematics

•

Signal Extraction	% uncertainty	# of signal
EWK shape	7.7	117
Resolution	5.6	85
TOTAL EXTRACTION	9.5	144
Acceptance	% uncertainty	# of signal
JES	8	121
JER	0.7	11
Met Model	1	15
Trigger Efficiency	2.2	33
ISR/FSR	2.5	38
PDF	2	30
TOTAL ACCEPTANCE	9.0	136
LUMI	6	91
TOTAL SYSTEMATICS	14.4	218

- Uncertainties associated
 with nuisance parameters
 are folded into fit statistical
 uncertainty
- Remaining systematic uncertainties on signal extraction
 - EWK shape (next slide)
 - Jet energy resolution (JER)
 - Smear signal template according to JER uncertainty

Systematics on Shape of EWK Background

- Use data γ+jets as alternative template
 - Many uncertainties eliminated
- Basic idea: kinematics of V+jets ≈ γ+jets, V=W,Z

$$V + jets(data) = \frac{V + jets(MC)}{\gamma + jets(MC)} \times \left[\gamma + jets(data)\right]$$

Signal Extraction

- Fit result
 - Signal: 1516 ± 239(stat) ± 144(syst)
 - Expected from PE: 1398 ± 243
 - JES: 0.985 ± 0.015

Significance

- Naively 1516/ $\sqrt{(239^2+144^2)}=5.4\sigma$
- Consider parameter variations for all sources of systematics
 - Compare likelihood of background only fit with full fit result
 - Convert difference into probability
- Lowest significance returned: 5.3σ

 χ^2 /ndf has 37% probability

Cross Section

$$\sigma = \frac{N_{vv}(extracted)}{\varepsilon \cdot A \cdot L}$$

- N_{VV}(extracted)=1516
- Efficiency, ε
 - Trigger: 96%
 - Cosmics removal: 99%
- Luminosity, L: 3,450 pb⁻¹
- Acceptance is weighted by WW, WZ, ZZ cross sections
- Cross section
 - Measured: $18.0 \pm 2.8(stat) \pm 2.4(syst) \pm 1.1(lumi) pb$
 - Theory: 16.8±0.5 pb

Process	Cross Section, pb	Acceptance, %
WW	11.7	2.48
WZ	3.6	2.64
ZZ	1.5	2.94

Back to Higgs Searches...

- On the road to Higgs
 - Need more data
 - Tevatron running until 2011?
 - Increase acceptance
 - Need better analysis techniques
 - Metmodel, track MET, ...
 - Reduce systematics
 - Use data to model backgrounds
 - Need smart techniques to extract small signals
 - ME, neural net, decision trees
 - Combine analyses
 - Explore new channels

Summary

- First observation of vector boson pair production in hadronic final state at the Tevatron
 - Published in PRL 103, 091803 (2009)
 - Milestone in search for low mass Higgs
- Measured diboson production cross section
 - Measured: $18.0 \pm 2.8(stat) \pm 2.4(syst) \pm 1.1(lumi) pb$
 - SM prediction: 16.8±0.5 pb
- Developed and tested new effective techniques
 - Metmodel to remove QCD
 - Track MET to estimate remaining QCD
 - Used γ +jj events to estimate shape systematics of EWK template
- Next goal before Higgs is WZ and ZZ observation in final state with two b-jets

We are almost at the summit of SM!!!

Backup Slides

Cosmic Removal

Trigger Efficiencies

- Final integral efficiency is 96.2%±2.2%
 - Take 90% efficiency for MET>120
 → 2% effect → assign additional
 2% uncertainty

$$Eff = \frac{C}{1 + e^{\frac{a-x}{b}}}$$

"Effective" Sample Lumi: 3,450 pb⁻¹

- Use muon trigger to find "effective" lumi of all MET triggers
 - Muon sample: N = $\sigma^* A^* \epsilon^* L_{HiPt}$ = 357, L_{HiPt}=3,483 pb⁻¹, ε=100%
 - MET sample: $N^{MET} = \sigma^* A^* \epsilon^{MET*} L_{MET} = 339$, $\epsilon^{MET} = 96\%$

$$- L_{MET} = L_{HiPt} * N^{MET} / (N * \varepsilon^{MET}) = 3,450 \text{ pb}^{-1}$$

Method also x-checked with MET40 & MET45 triggers only

11/30/09

Rejecting Fake MET in W+jet Events: M_T plot

- Metsig>5 effectively removes QCD fakes
 - Only a small fraction remains in the region M_T <10 GeV

Rejecting Fake MET in W+jet Events: $\Delta \phi_{closest}$

- Left plot: clearly see QCD contribution at small $\Delta \phi$
- Right plot: QCD is gone if MET-sig>5

Signal Template for Final Fit

- Allow JES to float in the fit
 - From Final fit: 0.985±0.019
- Parameterize width (Gaussian σ) as a function of JES

JER uncertainty

11/30/09

"Sideband" Kinematics: 40<M_{ii}<60, 110<M_{ii}<160 Data Data EWK EWK QCD QCD 0^L 0.5 1.5 2.5 $\Delta \phi_{\text{closestjet}}$ METSIG Data Data EWK EWK QCD QCD 200 A Pronko, 250 Video 50 minar 80 H_T 5011/30/09 160 42 18 MET (GeV/c²)

"Sideband" Kinematics: 40<M_{jj}<60, 110<M_{jj}<160

"Sideband" Kinematics: 40<M_{jj}<60, 110<M_{jj}<160

No $\Delta\phi_{closest}$ Cut

No $\Delta\phi_{closest}$ Cut

Significance Part-I

- MINUIT reports 1516/239=6.34 σ
 - PEs (s+b fit to s+b generated) imply a 6.45σ
 - $-2*\Delta L = LogL(s+b)-LogL(b)=42$
 - TMath::Prob(42,1) = $9.1 \times 10^{-11} \rightarrow 6.48\sigma$
- Naïve approach:
 - stat²+syst²=234²+144²=275²
 - − 1516/275 = 5.5 σ → 3.8x10⁻⁸

Significance Part-II

- Try to estimate the degradation of all systematic uncert. on the significance
 - Fix all parameters except N_{ewk} and N_{sig}
 - $\Delta L = 22 \rightarrow TMath::Prob(44,1)=3.3x10^{-11} \rightarrow >6\sigma$
 - Use alternative JER and repeat:
 - $\Delta L = 22 \rightarrow TMath::Prob(44,1)=3.3x10^{-11} \rightarrow >6\sigma$
 - Use alternative γ +jets and repeat:
 - $\Delta L = 14 \rightarrow TMath::Prob(28,1)=1.2x10^{-7} \rightarrow 5.3\sigma$
- The smallest significance corresponds to 5.3σ
 - Good agreement with Naïve approach: 5.5 σ