

Experimental Particle Physics Seminar Southern Methodist University Monday, February 26, 2007

Alexandre V. Telnov

SLAC, m/s 35 2575 Sand Hill Rd. Menlo Park, CA 94025 U.S.A.

E-mail: AVTELNOV@PRINCETON.EDU

A Brief History of the Universe:

Events	Time	Temperature	
Big Bang	0	œ	
Quantum gravity threshold	10 ⁻⁴³ sec	10 ¹⁹ GeV	
Grand Unification transition	10 ⁻³⁵ sec	10 ¹⁵ GeV	
Electroweak symmetry breaking	10 ⁻¹¹ sec	$10^3 \mathrm{GeV}$	
Hadrons form from quarks	10 ⁻⁶ sec	1 GeV	
Nucleosynthesis (D, He, Li)	1 sec	1 MeV	
Electron-nuclei recombination	400,000 years	1 eV	
Today	15×10^9 years	2.73 K	

$$H^{2}(t) = \left(\frac{1}{R}\frac{dR}{dt}\right)^{2} = \frac{8\pi G_{N}\rho(t)}{3}$$
$$H(\text{now}) = 50 \div 85\frac{\text{km}}{\text{sec} \cdot \text{Mpc}}$$
$$T_{\text{Universe}}(\text{MeV}) \approx \frac{1}{\sqrt{t(\text{sec})}}$$
$$m_{\text{Planck}} = \sqrt{\frac{\hbar c}{G_{N}}} = 1.221047(79) \times 10^{19} \text{GeV}/c^{2}$$

But none of this would matter if it were not for the...

We are survivors of the post-Big Bang mutual annihilation of matter and antimatter

The three conditions necessary to produce the baryonic asymmetry of the Universe:

(photo circa 1943)

А. Д. Сахаров, *Письма в ЖЭТФ*, **5**, № 1, 32-35, 1 января 1967 A. D. Sakharov, *Soviet Journal of Experimental and Theoretical Physics, Letters to the Editor*, **5**, No. 1, 24-27, 1st January 1967

(the original reads quite a bit better than the English translation!)

Through the CPT Theorem, CP violation implies the existence of T violation

- Theory: The CKM matrix; CP violation in B⁰ mesons
- The facilities: Overview of PEP-II/BaBar, KEKB/Belle; their performance
- Time-dependent *CP* analysis at a *B* factory: event selection, background suppression, vertex reconstruction, tagging b $\frac{c}{c}$ J/ ψ , ψ (2S), χ_{c1}

 $\overline{\mathbf{B}}^0$, \mathbf{B}^-

 $\overline{d}, \overline{u}$

W

 $ar{u}$. $ar{d}$

 $\overline{K}, \overline{K}^*, \pi^0$

 $ar{u},\,ar{d}$

- CP violation in sin(2β) modes:
 - charmonium modes: $J/\psi K_S$, $J/\psi K_L$, $\psi(2S)K_S$, $\chi_{c1}K_S$, $\eta_c K_S$, $J/\psi K^{*0} (K^{*0} \rightarrow K_S \pi^0)$ $b - \kappa_S \pi^0$
 - penguin-dominated modes: $\eta' K_{S}$, $\varphi K^{0} B^{u,c,t}$
- CP violation in $\pi^+\pi^-$ and $K^+\pi^-$
- Improvements currently in the works in BaBar

The Quark Mixing Matrix

The only Standard-Model source of CP violation in the quark sector

The Cabibbo-Kobayashi-Maskawa matrix relates the electroweak (q') and the mass (q) quark eigenstates:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{us} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4}) + iO(\lambda^{6})$$

$$V^{\dagger}V = 1 \implies V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{ud} V_{ub}^{*} = 0$$

$$The "unitarity triangle"$$

$$\alpha \equiv \arg \left[-\frac{V_{ud}V_{ub}^{*}}{V_{ud}V_{ub}^{*}} \right]$$

$$\beta \equiv \arg \left[-\frac{V_{ud}V_{ub}^{*}}{V_{ud}V_{ub}^{*}} \right]$$

$$\psi^{+} - - \int_{gV_{ij}} q_{i} = u, c, t$$

$$gV_{ij} = d', s', b'$$

$$P \equiv \arg \left[-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \right]$$

$$W^{+} - \int_{gV_{ij}} q_{j} = d', s', b'$$

$$B^{0} \rightarrow D^{*}\pi$$

$$B^{0} \rightarrow CV$$

$$B \rightarrow \psi K_{S}$$

$$B^{0} \rightarrow \pi^{*}\pi^{*}, K^{*}\pi^{*}(SU(3)_{0})$$

et al. [Particle Data Group], J. Phys. G 33, 1 (2006)

The time-dependent rate for $\overline{B}^0(f_+)$ or $B^0(f_-)$ decays to a final state *f* (neglecting the lifetime difference between the mass eigenstates B_H and B_L):

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B}}}{4\tau_{B}} [1 \mp C_{f} \cos(\Delta m \Delta t) \mp S_{f} \sin(\Delta m \Delta t)]$$
where S and C is what we measure
$$\sum_{AH} \sum p |B^{0} \ge \pm q |\overline{B^{0}} \ge \int_{A_{f}} \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \quad , \quad \underbrace{S_{f}}_{f} = \frac{-2 \operatorname{Im} \lambda_{f}}{1 + |\lambda_{f}|^{2}}, \quad \underbrace{C_{f}}_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}$$

$$a_{f} \text{ is the time-evolution asymmetry:} \quad a_{f}(\Delta t) = \frac{f_{+}(\Delta t) - f_{-}(\Delta t)}{f_{+}(\Delta t) + f_{-}(\Delta t)}$$

If f is a CP eigenstate, f_{CP} , we have CP violation if $\lambda_f \neq \pm 1$: $B_{CP} = \frac{1}{2} \left(\frac{CP}{CP} \right)^{-1} = \frac{1}{2} \left$

- $|q/p| \neq 1$ (*CP* violation in mixing, negligible)
- $|\overline{A}_{\overline{f}}/A_{f}| \neq 1$ (direct *CP* violation, small in $b \rightarrow c\overline{c}s$)
- $Im(\lambda_f) \neq 0$ (interference between mixing and decay)

Observations of CP Violation in B-meson Decays

|B|

Alexandre V. Telnov (Princeton University), February 26, 2007 **7**

Phys. Rev. Lett. 96, 251802 (2006)

neutral *B* mesons

Observations of CP Violation in B-meson Decays

Time-dependent CP analysis at a B-meson factory

Observations of CP Violation in B-meson Decays

A pair of weakly correlated variables that reflect energy and momentum conservation: peaking for fully reconstructed *B* decays, smooth for combinatorial background

- The principal source of background to rare *B* decays: random track/neutral combinations from quark-pair (*udsc*) production in the continuum:
 - total *udsc* cross section ~3.4 nb, compared to ~1.1 nb for Y(4S)
 - udsc events have jet-like topology, while B decays are nearly spherical in CM
 - several topological variables are employed to suppress this background
- Backgrounds from $\tau^+\tau^-$ production and two-photon physics are usually negligible
- Backgrounds from other *B* decays tend to be small

Key parameters of the PEP-II and KEKB asymmetric *B*-meson factories

February 14, 2007	KEKB	PEP-II	
CM energy, GeV	10.580		
Beam energies, GeV	8.0 <i>e</i> ⁻, 3.5 <i>e</i> ⁺	9.0 <i>e</i> ⁻, 3.1 <i>e</i> ⁺	
Beam currents, A	1.34 <i>e</i> ⁻, 1.66 <i>e</i> ⁺ 1.1 <i>e</i> ⁻, 2.6 <i>e</i> ⁺ design	1.88 <i>e</i> ⁻, 2.90 <i>e</i> ⁺ 0.7 <i>e</i> ⁻, 2.1 <i>e</i> ⁺ design	
Number of bunches	1389 / 5000 design	1722 / 1658 design	
Peak luminosity, 10 ³³ cm ⁻¹ s ⁻²	17.1 / 10 design	12.1 / 3 design	
Best 24 hours, pb ⁻¹ (3 consecutive 8-hour shifts)	1232	911 / 135 design	
Total recorded luminosity, fb ⁻¹	710	396	

Compare this to the ~40 pb^{-1} delivered in 10 years of VEPP-4 operation at Y(nS)!

KEKB/Belle and PEP-II/*BaBar* both perform extremely well

Observations of CP Violation in B-meson Decays

Physics productivity

Journal papers as of today: BaBar: 258 submitted, 244 published Belle: 202 submitted, 188 published

BaBar 2004-06 average: close to 60 papers/year, by far the greatest addition to PDG-RPP '06

We are **very** fortunate that two B-meson factories exist!

Running currently authorized until BaBar: September 30, 2008 (close to 1 ab⁻¹ expected) Belle: 1 ab⁻¹ Analysis to continue for several more years Belle and *BaBar* datasets are unique, may never be superseded

Observations of CP Violation in B-meson Decays

BaBar detector outline

BaBar Detector details

Observations of CP Violation in B-meson Decays

Observations of CP Violation in B-meson Decays

The Belle Detector

A. Abashian et al. [Belle Collaboration], Nucl. Instrum. Meth. A 479, 117-232 (2002)

sin2 β in "golden" modes:

The <u>highest-precision</u> test of the CKM mechanism of CP violation in the Standard Model

"Golden" modes: color-suppressed tree dominates; the *t*-quark penguin has the same weak phase as the tree. In SM, therefore,

$$S_{golden} = \eta_{CP} \times \sin 2\beta, \quad C_{golden} = 0 \quad (\eta_{CP} = \pm 1)$$

Theoretical uncertainties:

• example of a model-independent, data-driven calculation: assuming $SU(3)_{\text{flavor}}$ invariance, use $B^0 \rightarrow J/\psi \pi^0$ data to constrain penguin pollution in $J/\psi K^0 \Rightarrow \Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin 2\beta = 0.000 \pm 0.012$

• theoretical estimates of the biases due to *u*- and *c*-quark penguins, etc.:

• $\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin 2\beta \sim O(10^{-3})$ H. Li, S. Mishima, hep-ph/0610120 • $\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin 2\beta \sim O(10^{-4})$ H. Boos et al., Phys. Rev. D 73, 036006 (2006)

M. Ciuchini, M. Pierini, L. Silvestrini,

sin2 *b* in "golden" modes: *BaBar* ICHEP 06 (preliminary)

Over 11300 signal events

hep-ex/0607107

sin2 β in "golden" modes: *BaBar* ICHEP 06 (preliminary)

hep-ex/0607107

sin2 *b* in "golden" modes: *BaBar* ICHEP 06 (preliminary)

hep-ex/0607107

sin2 \$\beta\$ in "golden" modes:

Excellent agreement with global SM fit

Observations of CP Violation in B-meson Decays

Measurements of S in $B^0 \rightarrow J/\psi K^0$ by *BaBar* and Belle were the **first** observations of *CP* violation in *B* mesons (2002)

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41:1-131 (2005)

Decays dominated by gluonic penguins: $B^0 \rightarrow \eta' K^0$, φK^0 , $K^+ K^- K_s$, $K_s \pi^0$, $K_s K_s K_s$, ωK_s , $f_0 K_s$, etc.

For example, consider $B^0 \rightarrow \varphi K^0$ or $K_S K_S K_S$

- Tree-level SM contributions are absent!
- All other SM contributions are strongly suppressed
- SM penguins dominated by top-quark loops

 \Rightarrow in SM, direct *CP* violation is small, ~1%

 \Rightarrow and time-dependent CP violation is the same as in the "golden" charmonium-K⁰ modes

Great sensitivity to non-SM physics in the loops!

Observations of CP Violation in B-meson Decays

Decays dominated by gluonic penguins:

Indirect limits on the squark mixing matrix elements

Assuming all Δ 's small and squarks nearly degenerate, we can use mass insertion approximation (MIA):

$$(\delta^d_{ij})_{AB} = \frac{(\Delta^d_{ij})_{AB}}{\tilde{m}^2}$$

Complementarity with the LHC is part of the physics case for a "Super B Factory"

The world-average $\sin 2\beta$ in penguin modes is 2.6σ less than in the "golden" modes

Observations of CP Violation in B-meson Decays

"This could be the greatest discovery of the century. Depending, of course, on how far down it goes..."

$S_{\varphi K}^{\circ}$: another lesson on not getting too excited about 3σ -ish effects... BaBar: hep-ex/0607112 Belle: hep-ex/0608039

Observations of CP Violation in B-meson Decays

Observations of CP Violation in B-meson Decays

Measuring α with $B^0 \rightarrow \pi^+ \pi^-$

 $\mathcal{A}_{CP}(t)$ in $b \to u\overline{u}d$ decay to a CP eigenstate <u>at the tree level</u>:

Measure
$$180^{\circ} - \beta - \gamma = \alpha \equiv \arg \left[\frac{-V_{td} V_{tb}^*}{V_{ud} V_{ub}^*} \right]$$
 (in SM)

Penguins: $\mathcal{A}_{CP}(t) \Rightarrow \sin(2\alpha_{eff}); \alpha_{eff} = \alpha - \Delta \alpha; \text{ direct } \mathcal{A}_{CP} \neq 0$

Isospin analysis in $B \to \pi \pi, \rho \rho$

M. Gronau, D. London, Phys. Rev. Lett. 65, 3381 (1990)

$$A^{+-} = A(B^{0} \to \pi^{+}\pi^{-})$$
$$\widetilde{A}^{+-} = A(\overline{B}^{0} \to \pi^{+}\pi^{-})$$
$$A^{00} = A(B^{0} \to \pi^{0}\pi^{0})$$
$$\widetilde{A}^{00} = A(\overline{B}^{0} \to \pi^{0}\pi^{0})$$
$$A^{+0} = A(B^{-} \to \pi^{+}\pi^{0})$$
$$\widetilde{A}^{-0} = A(B^{-} \to \pi^{-}\pi^{0})$$

In $B \rightarrow \rho \rho$, there are 3 such relations (one for each polarization)

6 unknowns, 6 observables in $\pi\pi$ (there is no vertex to measure $S_{\pi^0\pi^0}$) 5 observables in $\rho\rho$ (or 7, when both $C_{\rho^0\rho^0}$ and $S_{\rho^0\rho^0}$ are measured)

4-fold ambiguity in $2\Delta \alpha$: either triangle can flip up or down

 $A_{hh} = e^{+i\gamma}T + e^{-i\beta}P$ $\widetilde{A}_{hh} = e^{-i\gamma}T + e^{+i\beta}P$

Neglecting EW penguins, ± 0 is a pure tree mode, and so the two triangles share a common side:

$$A(B^+ \to h^+ h^0) = A(B^- \to h^- h^0)$$

$$A^{+0} = \frac{1}{\sqrt{2}} A^{+-} + A^{00}$$
$$\widetilde{A}^{-0} = \frac{1}{\sqrt{2}} \widetilde{A}^{+-} + \widetilde{A}^{00}$$

ICHEP'06 BaBar results: $B^0 \rightarrow \pi^+ \pi^-$ (1)

BaBar-CONF-06/039 (hep-ex/0607106)

Observations of CP Violation in B-meson Decays

BaBar: hep-ex/0607106; Belle: hep-ex/0608035

Observations of CP Violation in B-meson Decays

Observations of CP Violation in B-meson Decays

The $B \to \pi^{\pm} \pi^{0}, \pi^{0} \pi^{0}$ analysis

Simultaneous fit to $B^0 \to \pi^+ \pi^0$, $K^+ \pi^0$ (using DIRC Cherenkov angle to separate pions and kaons) $B^0 \to \pi^0 \pi^0$: branching fraction and time-integrated direct *CP* asymmetry

NEW in 2006: in addition to $\pi^0 \to \gamma\gamma$, we use merged π^0 and $\gamma \to e^+e^-$ conversions $\Rightarrow 10\%$ efficiency increase per π^0 (4% from merged π^0 , 6% from γ conversions)

merged π^0 :

the two photons are too close to one another in the EMC to be reconstructed individually; can be recovered using

$$M_{\pi^0}^2 \approx E_{\pi^0}^2 (S_{\pi^0} - S_{\gamma}),$$

where S is the second EMC moment of the merged $\pi^0 \to \gamma \gamma$

The control sample: $\tau \rightarrow \rho v$

Observations of CP Violation in B-meson Decays

 $N_{\pi^{\pm}\pi^{0}} = 572 \pm 53$

$$N_{\pi^0\pi^0} = 140 \pm 25$$

$$\mathcal{Br}_{\pi^{\pm}\pi^{0}}^{\pm} = (5.12 \pm 0.47 \pm 0.29) \times 10^{-6}$$

$$\mathcal{Br}_{\pi^0\pi^0} = (1.48 \pm 0.26 \pm 0.12) \times 10^{-6}$$
$$\mathcal{C}_{\pi^0\pi^0} = -0.33 \pm 0.36 \pm 0.08$$

 $\nabla \pi' \pi'$

Observations of CP Violation in B-meson Decays

An interpretation of *BaBar* ICHEP'06 $B \rightarrow \pi\pi$ results

hep-ex/0607106

Observations of CP Violation in B-meson Decays

Global fits for the value of *C* BaBar only, ICHEP'06

Two interpretations currently exist that convert the $B \rightarrow \pi \pi$, $\rho \pi$, $\rho \rho$ measurements to constraints on α :

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C**41**, 1-131 (2005), [hep-ph/0406184], updated results and plots available at http://ckmfitter.in2p3.fr

Observations of CP Violation in B-meson Decays

M. Ciuchini, G. D'Agostini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, P. Roudeau, A. Stocchi, JHEP **0107** (2001) 013 [hep-ph/0012308], updated results and plots available at http://utfit.roma1.infn.it

BaBar: hep-ex/0607106; Belle: ICHEP'06; CDF: DPF'06

BaBar:
$$\mathcal{A}_{K^+\pi^-} = -0.108 \pm 0.024 \pm 0.008$$
(ICHEP'06)Belle: $\mathcal{A}_{K^+\pi^-} = -0.093 \pm 0.018 \pm 0.008$ (ICHEP'06)CDF: $\mathcal{A}_{K^+\pi^-} = -0.086 \pm 0.023 \pm 0.009$ (DPF'06)

 $\mathcal{A}_{K^+\pi^-}(WA) = -0.095 \pm 0.013 (>7\sigma) \qquad \text{no single-experiment} \\ 5\sigma \text{ observation yet}$

Predicted to be $\approx A_{K^+\pi^0}(WA) = +0.047 \pm 0.026$

4.8 σ difference: an " $\mathcal{A}_{K\pi}$ puzzle"

- Could be due to hadronic effects, not New Physics (see R. Fleischer, hep-ph/0701217)

Observations of CP Violation in B-meson Decays

Looking for New Physics in $B^0 o \pi^+ \pi^-$, $B^0 o K^+ \pi^-$

This is just an example! R. Fleischer, hep-ph/0701217, hep-ph/0608010; V. Barger et al., hep-ph/0406126

From Standard Model using *SU*(3), the ratio of the EW penguin and tree amplitudes q = 0.60 and their relative phase $\varphi = 0$.

$$R_{\rm c} \equiv 2 \left[\frac{{\rm BR}(B^{\pm} \to \pi^0 K^{\pm})}{{\rm BR}(B^{\pm} \to \pi^{\pm} K^0)} \right] \stackrel{\rm exp}{=} 1.11 \pm 0.07$$
$$R_{\rm n} \equiv \frac{1}{2} \left[\frac{{\rm BR}(B_d \to \pi^{\mp} K^{\pm})}{{\rm BR}(B_d \to \pi^0 K^0)} \right] \stackrel{\rm exp}{=} 0.99 \pm 0.07$$

Before ICHEP 06 preliminary results: $q = 0.99 + 0.66 - 0.70, \quad \phi = -(94 + 16)^{\circ}$

Now the situation is much better:

$$q = 0.65^{+0.39}_{-0.35}, \quad \phi = -(52^{+21}_{-50})^{\circ}$$

Observations of CP Violation in B-meson Decays

π/K separation with DCH d*E*/dx:

Catching up with Belle's $B^0 \rightarrow h^+h^-$ reconstruction efficiency

Indeed, in the forward region, DCH d*E*/d*x* is not much worse than the DIRC—and is 100% efficient!

There are <u>many</u> reasons in the past DCH dE/dxfailed to work in likelihood-based $B \rightarrow Xh^{\pm}$ analyses

There are many reasons all previous attempts to use DCH dE/dx in $B^0 \rightarrow Xh^{\pm}$ have failed...

DCH d*E*/dx also varies with time and the azimuthal angle φ

The DCH dE/dx fits - step 1

Observations of CP Violation in B-meson Decays

dE/dx in DCH

This is what DCH dE/dx looks like <u>after</u> the new calibration

Observations of CP Violation in B-meson Decays

New, detailed DCH dE/dx parametrization: "Two-body" π, K, p pulls

Pulls are controlled at a <1% level; non-Gaussian tails are absent by construction

"Two-body" DCH dE/dx K-π separation complementary to DIRC

Observations of CP Violation in B-meson Decays

The sample:
$$D^{*+} \rightarrow \pi^+_{\text{slow}} D^0, D^0 \rightarrow \pi^+ K^-$$

Flavor of the D^0 tagged by the π^+_{slow} charge (DCSD negligible)

$$e^+e^- \rightarrow c\overline{c}$$
 only: $p_{\rm CM}(D^0) > 2.5 \text{ GeV}/c$

 \mathcal{A}_{FB} *minimized*: $1.251 \le \theta_{\text{CM}}(D^0) \le 1.891$ rad

Validation completed: $\mathcal{A}_{K^+\pi^-}$ bias that is due to PID PDFs is negligible

Observations of CP Violation in B-meson Decays

1) Detailed GEANT4 v7.1-based simulation

2) From material accounting and material properties + cross sections tabulated in PDG-RPP

Material type	comment	density	λ_T	$\operatorname{thickness}$	in λ_T	$\int \lambda_T$ from IP
Au	beam pipe	19.3	113.9	$4 \ \mu m$	0.07×10^{-3}	
Be	beam pipe	1.848	55.8	$1.36 \mathrm{~mm}$	4.50×10^{-3}	
H_2O	beam pipe	1.000	60.1	1.48 mm	2.46×10^{-3}	0.703%
Si	SVT modules	2.33	70.6	1.7 mm	5.61×10^{-3}	
Kapton + glue	SVT fanouts	1.4	60.3	$0.50 \mathrm{mm}$	1.16×10^{-3}	
Cu + Cr	SVT fanouts	9.0	85.6	$24~\mu{ m m}$	0.25×10^{-3}	
Au	SVT fanouts	19.3	113.9	$5~\mu{ m m}$	0.09×10^{-3}	
Air	SVT	0.001205	62.0	$20~\mathrm{cm}$	0.39×10^{-3}	
\mathbf{C}	support tube	2.265	60.2	$1.5 \mathrm{mm}$	5.57×10^{-3}	
Be	inner DCH wall	1.848	55.8	1.00 mm	3.31×10^{-3}	2.34%
80% He, $20%$ C ₄ H ₁₀	$25 \mathrm{~cm}$ of DCH	0.000615	51.2	$25~\mathrm{cm}$	0.30×10^{-3}	
Total (IP to DCH)	90° GTL track					$2.37\% \ \lambda_T$
80% He, $20%$ C ₄ H ₁₀	the rest of DCH	0.000615	51.2	$32 \mathrm{~cm}$	0.38×10^{-3}	
\mathbf{C}	DCH outer wall	2.265	60.2	$3.8 \mathrm{mm}$	14.3×10^{-3}	
Al	DCH outer wall	2.70	70.6	$125~\mu{ m m}$	0.48×10^{-3}	
Al	DRC before SiO_2	2.70	70.6	3.2 mm	12.3×10^{-3}	
Total IP to DIRC	90° track					$5.1\% \lambda_T$

3) Asymmetry in the continuum background is consistent with these predictions

Fitter internal consistency check

"Pure toy" MC generated with PDFs and sample sizes representative of the full 1999-2006 dataset, including d*E*/dx PDFs.

There are no biases

(1)

Fitter internal consistency check

sig_dt_pipi_S

ππ

70

60

50

40

Embedded toy MC generated with fully simulated signal and a "toy" background, with sample sizes representative of the full 1999-2006 dataset, including d*E*/dx PDFs.

Observations of CP Violation in B-meson Decays

(2)

800 0.0163

0.9523

34.22 / 28

 66.8 ± 2.9

 0.01675 ± 0.03378

0.9555 ± 0.0239

sig dt pipi S

Entries

Mean

RMS

 γ^2 / ndf

Mean

Sigma

Constant

Fitter internal consistency check

(3)

Analysis and PRL draft entered Collaboration-wide Review on President's Day, which means that I am not allowed to tell you any numbers or results yet except this:

Effective lumi gain from d*E*/dx is 31-35%

We still continue to improve BaBar!

Here are a few examples

Observations of CP Violation in B-meson Decays

dE/dx in Silicon Vertex Tracker: π/e , K/e separation; stand-alone SVT tracking

Suffers from the same This is what SVT dE/dx looks like <u>after</u> the new detailed calibration systematics as DCH d*E*/d*x*, SVT dE/dx for various particle types, Run 3, data only worse corrected SVT dE/dx minimum-ionizing SVT dE/dx. Run 2+4 data. by chare Need Ř protons momentum 12 at each kaons SVT wafer pions 10 muons 3.55 electrons 3.45 theta minimum-ionizing SVT dE/dx. Runs 1. 3 and 5. data Run 1 Run 3 Run 5 will aid PID at low momenta 0 **10¹** 1 10 LAB momentum, GeV/c

Observations of CP Violation in B-meson Decays

Problems with RPCs

- The only major problem with the BaBar detector, known since 1999: RPC efficiency deteriorating at ~10-20%/year.
- Good muon and K_L identification efficiency essential in many searches for New Physics at BaBar.
- Forward End Cap upgraded in 2002:
- The Barrel has 5.1 λ_{int} with Layer 19 RPCs (dying, inaccessible), 4.5 λ_{int} without marginal for a muon system.
- Adding six 2.2 cm layers of brass increases barrel thickness to 5.3 $\lambda_{\rm int}$.

• The technology chosen for Barrel RPC replacement is the **Limited Streamer Tube** (LST). Installed in 2004-06

LST technology

• LST is a wire chamber operating in the self-limiting streamer mode, so

- Signal does not depend on the amount of initial ionization.
- Non-flammable gas ($CO_2/i-C_4H_{10}/Ar$).
- 17x15 mm cells with three walls covered with conductive paint (graphite/PVAC).

• Tubes with 7 or 8 cell, 13 to 20 tubes per layer.

• phi position read off the wires (4 channels per tube), 94% eff., multiplicity mostly 1.

• Z strips span the entire width of a layer.

LST performance

First cosmics: run 50769, event 50170, Sep 28, 2004

Example of single-layer efficiency, May 2005

Observations of CP Violation in B-meson Decays

Where we stand on muon ID

before many further improvements

We are already doing better than RPCs ever did!

"In the pipeline" for Particle ID: better DCH and SVT dE/dx; more EMC information; boosted decision trees; ...

Muon ID performance Neural Net vs. Decision Trees

very preliminary

Observations of CP Violation in B-meson Decays