THE ROLE OF PRECISION STUDIES IN THE QUEST FOR NEW PHYSICS

ENRICO LUNGHI

Fermilab
The Standard Model
Open questions and possible solutions
How to establish new physics
Status of New Physics searches
A journey in supersymmetry
THE STANDARD MODEL
The Standard Model

- The SM is a Quantum Field Theory: fusion of Special Relativity and Quantum Mechanics
- There are three main ingredients:
 - **Forces:** $SU(3)_c \times SU(2)_W \times U(1)_Y$
 - **Matter:** quarks, leptons, gauge bosons
 - **Spontaneous Symmetry Breaking:** mass generation
The SM is a **Quantum Field Theory**: fusion of **Special Relativity** and **Quantum Mechanics**

There are three main ingredients:

- **Forces**: \(SU(3)_c \times SU(2)_{W} \times U(1)_{Y} \)
- **Matter**: quarks, leptons, gauge bosons
- **Spontaneous Symmetry Breaking**: mass generation where the problems begin
Fermion masses

- Transformation properties under $SU(3) \times SU(2) \times U(1)$

\[
\begin{pmatrix}
 u^a_L \\
 d^a_L
\end{pmatrix}
= (3, 2, +1/3)
\]

\[
u^a_R = (3, 1, +4/3)
\]

\[
d^a_R = (3, 1, -2/3)
\]

\[
\begin{pmatrix}
 H^+ \\
 H^0
\end{pmatrix}
= (1, 2, +1)
\]

- Fermion mass terms are forbidden?

(u_L, d_L) are a SU(2) doublet

u_R and d_R are SU(2) singlets

\[m_u \bar{u} L u_R\]
THE HIGGS MECHANISM

• We have a problem with Weak Interactions

 Exact $SU(2)$ gauge invariance requires **massless** fermions and vector bosons (W and Z)

• Spontaneous Symmetry Breaking:

 $SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{em}$
• We have a problem with Weak Interactions

Exact $SU(2)$ gauge invariance requires *massless* fermions and vector bosons (W and Z)

• Spontaneous Symmetry Breaking:

$SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{\text{em}}$
We have a problem with Weak Interactions

Exact SU(2) gauge invariance requires *massless* fermions and vector bosons (W and Z)

Spontaneous Symmetry Breaking:

$\text{SU}(3)_s \times \text{SU}(2)_W \times \text{U}(1)_Y \rightarrow \text{SU}(3)_s \times \text{U}(1)_{\text{em}}$
We have a problem with Weak Interactions

Exact SU(2) gauge invariance requires *massless* fermions and vector bosons (W and Z)

Spontaneous Symmetry Breaking:

\[
\text{SU}(3)_s \times \text{SU}(2)_W \times \text{U}(1)_Y \rightarrow \text{SU}(3)_s \times \text{U}(1)_{\text{em}}
\]
We have a problem with Weak Interactions

Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)

Spontaneous Symmetry Breaking:

\[SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{em} \]
The Higgs Mechanism

- A scalar SU(2) doublet (Φ) acquires a non-vanishing constant value over the whole space (v.e.v.)
- The W and Z become massive
- A neutral scalar particle of unknown mass emerges (h)
The Higgs is a SU(2) doublet with a vev:

\[\mathcal{L}_Y = \bar{Q}_L Y_d H d_R + \bar{Q}_L Y_u H^\dagger u_R + \text{h.c.} \]

after EWSB

\[\mathcal{L}_m = \bar{d}_L (\nu Y_d) d_R + \bar{u}_L (\nu Y_u) u_R + \text{h.c.} \]
OPEN QUESTIONS
• General Relativity is hard to quantize:
 • naive approaches fail
 • loop gravity, superstrings theories

• Typical scale associated with gravity:

\[V = G_N \frac{mM}{r} \sim \frac{mM}{M_{pl}^2} \cdot \frac{1}{r} \]

\[M_{pl} = G_N^{-1/2} = 1.22 \times 10^{19} \text{ GeV} \]
The strength of the SM interactions depend strongly on the energies (Q) of the interacting particles.

$M_{GUT} \sim 10^{16}$ GeV
The strength of the SM interactions depend strongly on the energies (Q) of the interacting particles.

\[\alpha \sim 10^{16} \text{ GeV} \]

Not quite unified.
\[\Delta \alpha_{\text{had}}^{(5)} = 0.02758 \pm 0.00035 \]

\[\Delta \alpha_{\text{had}}^{(5)} = 0.02749 \pm 0.00012 \]

incl. low \(Q^2 \) data

\(m_{\text{Limit}} = 144 \text{ GeV} \)
HIERARCHY PROBLEM

• Embed the SM into a theory that contains very large scales (M_{pl}, M_{GUT})

• Quantum fluctuations produce enormous masses for all particles not protected by a symmetry

• Fermions are protected by chirality, Gauge bosons receive masses close to the Higgs vev, the Higgs boson is unprotected:

\[\delta m_H \sim M_{GUT} \sim 10^{16} \text{ GeV} \]

\[(m_H)_{fit} \sim 10^2 \text{ GeV} \]
DARK MATTER

WMAP
$\Omega_{DM} h^2 = 0.1047^{+0.007}_{-0.0013}$
• The Gauge part of the SM depends on 4 parameters:

\[\alpha_1, \alpha_2, \alpha_3, \theta_{\text{QCD}} \]

• Electroweak Symmetry Breaking introduces other 15 parameters:

\[m_e, m_\mu, m_\tau, m_u, m_d, m_s, m_c, m_b, m_t \]

\[V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \]

\[m_H, \langle H \rangle \]
• **Yukawa Lagrangian:** $$\mathcal{L}_Y = \bar{Q}^0_L Y_d H d^0_R + \bar{Q}^0_L Y_u H^\dagger u^0_R + \text{h.c.}$$

• **Gauge interactions:** $$\mathcal{L}_{\text{gauge}} \sim \bar{u}^0_L W d^0_L + \bar{u}^0 Z u^0 + \bar{d}^0 Z d^0$$

• **Quark Mass Eigenstate Basis:**

 $$u_A = U_A u^0_A \quad \text{and} \quad d_A = D_A d^0_A \quad (A=\text{L,R})$$

 $$\mathcal{L}_{\text{gauge}} \sim \bar{u}_L V_{\text{CKM}} W d_L + \bar{u} Z u + \bar{d} Z d \quad \text{with} \quad V_{\text{CKM}} = U_L D_L^\dagger$$

• Of the **four** initial unitary matrices ($U_{\text{L,R}}$ and $D_{\text{L,R}}$), only **one** is observable (V_{CKM})
• No Flavor Changing Neutral Currents at tree level

• FCNC suppressed also at the loop level (GIM):

\[\propto V_{ib} V_{is}^* f \left(\frac{m_{ui}^2}{m_W^2} \right) \sim V_{tb} V_{ts}^* \left[f \left(\frac{m_t^2}{m_W^2} \right) - f(0) \right] \]

• These features have fantastic experimental implications and are a consequence of the (arbitrary) decision of introducing only one Higgs doublet
POSSIBLE SOLUTIONS
Supersymmetry

- Double number of particles (degrees of freedom)
- New symmetry at the TeV scale protects the Higgs mass
- Lightest sparticle provides a dark matter candidate
- Exact unification of electromagnetic, weak and strong interactions
- Relieves the tension between direct and indirect Higgs bounds

Diagram:

- Quarks: u, c, t, d, s, b
- Leptons: ν_e, ν_μ, ν_τ, e, μ, τ
- gauge bosons: γ, W, Z
- Higgs: H_u, H_d
- Higgsino: \tilde{H}_u, \tilde{H}_d
- Double number of particles
- New symmetry at the TeV scale protects the Higgs mass
- Lightest sparticle provides a dark matter candidate
- Exact unification of em, weak and strong interactions
- Relieves the tension between direct and indirect Higgs bounds
• Double number of particles
• New symmetry at the TeV scale protects the Higgs mass
• Lightest sparticle provides a dark matter candidate
• Exact unification of electromagnetic, weak, and strong interactions
• Relieves the tension between direct and indirect Higgs bounds

• indirect
• direct SM
• direct MSSM
OTHER OPTIONS

- **Extra Dimensions**
 - Elimination of the Planck scale
 - Some of the other problems can be tackled

\[M_{pl} = M_{EW} e^{kr_c \pi} \]

- **Technicolor**
 Higgs as a bound state of a strong force at the TeV scale

- **Little Higgs**
 Higgs as a pseudo-Goldstone boson
 “Modern incarnation of technicolor”
• **Direct detection** at Colliders (Tevatron, LHC)

• **Indirect detection** at B factories (BaBar, Belle), LHCb, super-B factories, rare K decays, Project-X, CLEO-c, LFV experiments (MEG),...

• **Cosmology**: dark matter relic density, direct dark matter detection (CDMS,...)
COMPLEMENTARITY

Direct detection

Establish new particles

Indirect detection

Quantum structure
STATUS OF NEW PHYSICS SEARCHES
ELECTROWEAK FITS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
<th>Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha^{(5)}_{\text{had}}(m_Z)$</td>
<td>0.02758 ± 0.00035</td>
<td>0.02768</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>91.1875</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4957</td>
</tr>
<tr>
<td>σ_{had} [nb]</td>
<td>41.540 ± 0.037</td>
<td>41.477</td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025</td>
<td>20.744</td>
</tr>
<tr>
<td>$A^{0,l}_{tb}$</td>
<td>0.01714 ± 0.00095</td>
<td>0.01645</td>
</tr>
<tr>
<td>$A_l(P^\tau)$</td>
<td>0.1465 ± 0.0032</td>
<td>0.1481</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066</td>
<td>0.21586</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030</td>
<td>0.1722</td>
</tr>
<tr>
<td>$A^{0,b}_{tb}$</td>
<td>0.0992 ± 0.0016</td>
<td>0.1038</td>
</tr>
<tr>
<td>$A^{0,c}_{tb}$</td>
<td>0.0707 ± 0.0035</td>
<td>0.0742</td>
</tr>
<tr>
<td>A_b</td>
<td>0.923 ± 0.020</td>
<td>0.935</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.027</td>
<td>0.668</td>
</tr>
<tr>
<td>$A_l(\text{SLD})$</td>
<td>0.1513 ± 0.0021</td>
<td>0.1481</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\text{eff}}(Q_{tb})$</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.398 ± 0.025</td>
<td>80.374</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.140 ± 0.060</td>
<td>2.091</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>170.9 ± 1.8</td>
<td>171.3</td>
</tr>
</tbody>
</table>
• Unitarity of the CKM matrix implies relations between the various elements

• Focus on the smallest elements

• $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Diagram:
- Unitarity triangle
- Points: $(d_L, s_L, b_L)_k$, $(u_L, c_L, t_L)_i$, $(0,0)$, $(1,0)$
- Relations: W^-, V_{ik}, V_{ub}^*, V_{td}^*, V_{cb}^*
UNITARITY TRIANGLE

\[\text{excluded area has CL > 0.95} \]

\[\sin 2\beta \]

\[\text{sol. w/ cos}^2 \beta < 0 \]

(excl. at CL > 0.95)

\[|V_{ub}| \]

\[\Delta m_s & \Delta m_d \]

\[\Delta m_d \]

\[\varepsilon_K \]

\[\rho \]

\[\text{Summer 2007} \]
Included area has CL > 0.95

sin2β

Δm_s & Δm_d

ε_K

|V_{ub}|

α

β

γ

Δm_d

ε_K

excluded area has CL > 0.95

sol. w/ cos2β < 0 (excl. at CL > 0.95)

CKM fitter
Summer 2007

V_{ts}

V_{td}

V_{ts}^*

V_{td}^*

K^0

K^0

B^0

B^0

J/ψK_S

V_{tb}

V_{td}

V_{tb}^*

V_{td}^*
HINTS FOR NEW PHYSICS!

• Dark Matter relic density:

\[\Omega h^2 = 0.1047^{+0.007}_{-0.0013} \rightarrow 80 \sigma \]

• Muon anomalous magnetic moment

\[a_{\mu}^{\text{exp}} = 11659208(6) \times 10^{-10} \]
\[a_{\mu}^{\text{SM}}(ee) = 11659178(6) \times 10^{-10} \]
\[a_{\mu}^{\text{SM}}(\tau) = 11659179(7) \times 10^{-10} \]

\[\delta a_{\mu} = (29.3 \pm 8.2) \times 10^{-10} \rightarrow 3.6 \sigma \]
The width for $D_s \rightarrow \ell\nu$ is
\[
\Gamma(D_s \rightarrow \ell\nu) = \frac{m_{D_s}}{8\pi} |G_F V_{cs}^* m_\ell| f_{D_s}^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2} \right)^2
\]

f_{D_s} is extracted from data and lattice-QCD:

$$(f_{D_s})_{\text{exp}} = (277 \pm 9)\text{MeV} \quad \text{[CLEO]}$$
$$(f_{D_s})_{\text{QCD}} = (241 \pm 3)\text{MeV} \quad \text{[HPQCD]}$$

The discrepancy is at the 3.8σ level

Requires non-MFV new physics! leptoquarks,...

Independent cross check of the lattice result needed
WHAT DOES THIS MEAN?
TWO SCENARIOS
TWO SCENARIOS

• Decoupling
 • New Physics is very heavy (\(\gg \) TeV)
 • Arbitrary Flavor Changing couplings
TWO SCENARIOS

- **Decoupling**
 - New Physics is very heavy (>> TeV)
 - Arbitrary Flavor Changing couplings

- **Minimal Flavor Violation**
 - The amazing agreement of B factories measurements with the SM predictions is a *powerful test of the CKM mechanism*
 - Relatively light new particles with CKM-like couplings
 - Correlation between Tevatron/LHC results and low-energy data

discoveries at LHC \[\rightarrow\] \[\leftarrow\] *deviations in precision experiments*
We adopt the definition of D’Ambrosio, Giudice, Isidori and Strumia: the only relevant information contained in the quark Yukawa’s are the eigenvalues and the CKM matrix:

\[Y_U = D_L \, V_{\text{CKM}}^\dagger \, \lambda_u^{\text{diag}} \, U_R , \quad Y_D = D_L \, \lambda_d^{\text{diag}} \, D_R \]

where the matrices \(U_R, D_L \) and \(D_R \) are unphysical.

- Can be implemented as an exact symmetry of the theory (!)
- The structure of Flavor Changing Neutral Currents usually follows the CKM pattern
- If new physics is fairly light (\(< 1 \text{ TeV}\)) deviations are unavoidable
A JOURNEY IN SUSY:
HOW LIGHT CAN THE HIGGS SPECTRUM BE?
REALISTIC MODELS

- **R-parity** (dark matter candidate)
- **Grand Unification**

![Graph](image)

- **Radiative ElectroWeak Symmetry Breaking**

\[\mu > \mu_0 \] \[\mu < \mu_0 \]

- **Minimal Flavor Violation**
• Any supersymmetric model requires two Higgs doublets (H_u, H_d)

• The Higgs spectrum is much richer: three neutral Higgses (h, H, A) and one charged Higgs (H^+)

• There are two vev’s: one for each doublet

\[
\frac{\langle H^0_u \rangle}{\langle H^0_d \rangle} = \tan \beta
\]
Absence of super-partners degenerate in mass with the SM particles implies that SUSY must be spontaneously broken.

Supergravity inspired MSSM (SUGRA)
Gauge Mediation (GM)
SOFT BREAKING TERMS

- **Squark mass terms:**
 \[\mathcal{L}^{\text{squarks}}_{\text{soft}} = \bar{Q}^\dagger M_Q^2 \bar{Q} + \bar{U}^\dagger M_U^2 \bar{U} + \bar{D}^\dagger M_D^2 \bar{D} + \bar{Q} Y_U^A H_u \bar{U} + \bar{Q} Y_D^A H_d \bar{D} \]

- **Sleptons mass terms:**
 \[\mathcal{L}^{\text{sleptons}}_{\text{soft}} = \bar{\tilde{L}}^\dagger M_L^2 \bar{\tilde{L}} + \bar{\tilde{E}}^\dagger M_E^2 \bar{\tilde{E}} + \bar{\tilde{L}} Y_D^E H_d \bar{\tilde{E}} \]

- **Gauginos mass terms:**
 \[\mathcal{L}^{\text{gauginos}}_{\text{soft}} = \frac{1}{2} \left(M_1 \bar{\tilde{B}} B + M_2 \bar{\tilde{W}} W + M_3 \bar{\tilde{g}} g \right) \]

- **Higgs mass terms:**
 \[\mathcal{L}^{\text{higgs}}_{\text{soft}} = \mu B H_1 H_2 + M_1^2 H_1^2 + M_2^2 H_2^2 \]
MSSM WITH MFV

- **General** soft-breaking terms:
 \[
 \mathcal{L}_{\text{soft}}^{\text{squarks}} = \bar{Q}^\dagger M_Q^2 Q + \bar{U}^\dagger M_U^2 U + \bar{D}^\dagger M_D^2 D + \bar{Q} Y_U^A H_u U + \bar{Q} Y_D^A H_d D \\
 \mathcal{L}_{\text{soft}}^{\text{sleptons}} = \bar{L}^\dagger M_L^2 L + \bar{E}^\dagger M_E^2 E + \bar{L} Y_D^E H_d E \\
 \mathcal{L}_{\text{soft}}^{\text{gauginos}} = \frac{1}{2} \left(M_1 \bar{B} B + M_2 \bar{W} W + M_3 \bar{g} g \right) \\
 \mathcal{L}_{\text{soft}}^{\text{higgs}} = \mu B H_1 H_2 + M_1^2 H_1^2 + M_2^2 H_2^2
 \]

- **MFV** soft-breaking terms:
 \[
 M_Q^2 = m_Q^2 \left(1 + b_1 Y_U Y_U^\dagger + b_2 Y_D Y_D^\dagger + b_3 Y_D Y_D^\dagger Y_U Y_U^\dagger + b_4 Y_U Y_U^\dagger Y_D Y_D^\dagger \right) \\
 M_U^2 = m_U^2 \left(1 + b_5 Y_U^\dagger Y_U \right) \\
 M_D^2 = m_D^2 \left(1 + b_6 Y_D^\dagger Y_D \right) \\
 A_U = a_U \left(1 + b_7 Y_D Y_D^\dagger \right) Y_U \\
 A_D = a_D \left(1 + b_8 Y_U Y_U^\dagger \right) Y_D
 \]
MSSM WITH MFV

- **mSugra:**

 \[M_{1/2}, M_0, A_0, \tan \beta, \text{sign}(\mu) \]

- **Non Universal Higgs Mass (NUHM) MSSM:**

 \[M_{1/2}, M_0, M_{H_1}, M_{H_2}, A_0, \tan \beta, \text{sign}(\mu) \]

- **Most general MFV MSSM:**

 \[
 (M^2_Q)_{ij} = M^2_Q \delta_{ij}, \quad (M^2_U)_{ij} = M^2_U \delta_{ij}, \quad (M^2_D)_{ij} = M^2_D \delta_{ij}, \\
 (M^2_L)_{ij} = M^2_L \delta_{ij}, \quad (M^2_E)_{ij} = M^2_E \delta_{ij}, \quad M^2_{H_1}, \quad M^2_{H_2}, \\
 (Y^A_U)_{ij} = A_U e^{i \phi_A U} (Y_U)_{ij}, \quad (Y^A_D)_{ij} = A_D e^{i \phi_A D} (Y_D)_{ij}, \\
 (Y^A_E)_{ij} = A_E e^{i \phi_A E} (Y_E)_{ij},
 \]
In the MSSM at large $\tan\beta$ there are tree-level Higgs-mediated FCNC's:

$$\mathcal{L}_Y = -\bar{d}_L Y^d d_R H_1 + \bar{d}_L \left(\Delta Y^d \right) d_R H_2^* + \bar{u}_L Y^u u_R H_2 + \bar{u}_L \left(\Delta Y^u \right) u_R H_1^*$$

For instance the b_R-s_L-Higgs coupling reads:

$$\mathcal{L}_S = \frac{ig_2}{2M_W} m_b \frac{(\epsilon_{\tilde{\chi}^-_Y} + \epsilon_{\tilde{g}_Y}) V_{ts} \tan^2 \beta}{(1 + \epsilon_0 \tan \beta)^2} \bar{b}_R s_L S + h.c.$$

induced from RG running

In SUSY models with Grand Unification and Minimal Flavor Violation:

$$\text{sign} \left(\epsilon_{\tilde{\chi}^-_Y} / \epsilon_{\tilde{g}_Y} \right) < 0$$
The experimental bound and the SM predictions are:

\[BR(B_s \rightarrow \mu \mu)^{\text{exp}} < 5.8 \times 10^{-8} \text{ at 90\% C.L.} \ [CDF&D0] \]

\[BR(B_s \rightarrow \mu \mu)^{\text{SM}} = (3.8 \pm 1.0) \times 10^{-9} \]

• In GUT MFV SUSY models the branching ratio reads

\[
BR(B_s \rightarrow \mu^+ \mu^-) \approx \frac{4 \times 10^{-8}}{[1 + 0.5 \times \frac{\tan \beta}{50}]^4} \left[\frac{\tan \beta}{50} \right]^6 \left(\frac{160 \text{ GeV}}{M_A} \right)^4 \left(\frac{e_{\tilde{t}Y} + e_{\tilde{g}Y}}{4 \times 10^{-4}} \right)^4
\]

• In our models the chargino contribution can easily be \(\sim 3 \times 10^{-3} \). The sum of chargino and gluino is naturally in the few \(\times 10^{-4} \) range.
Other Observables

- Muon Anomalous Magnetic Moment:

\[\delta a^{\mu} = (29.3 \pm 8.2) \times 10^{-10} \]

- \(B \to \tau \nu \)

\[R(B \to \tau \nu) \exp = 1.02 \pm 0.40 \]

\[R(B \to \tau \nu)^{\exp} = 3.6 \sigma \text{ deviation} \]

\[R(B \to \tau \nu) \exp = 1.02 \pm 0.40 \]

\[\text{complete agreement} \]
• $B \rightarrow X_s \gamma$

$\mathcal{B}(B \rightarrow X_s \gamma)_{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$

$\mathcal{B}(B \rightarrow X_s \gamma)_{\text{SM}} = (2.98 \pm 0.26) \times 10^{-4}$

• Dark Matter relic density

$\Omega h^2 < 0.13$ (99% C.L.)

• B_s mass difference

Not a constraint in these models
MINIMAL SUPERGRAVITY

150 GeV < M_A < 200 GeV

- **green**: direct bounds
- **black**: direct constraints
- **red**: direct constraints

Upper bound on Ωh^2

In the surviving region the $B \rightarrow \tau \nu$ amplitude is negative:

- $R(B \rightarrow \tau \nu)$
We can have light Higgses with smaller $\tan \beta$.

The $B \to \tau\nu$ amplitude can have both signs.
COLLIDER IMPLICATIONS
DIRECT SEARCHES AT COLLIDERS

<table>
<thead>
<tr>
<th></th>
<th>mass (GeV)</th>
<th></th>
<th>mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>130 – 180</td>
<td>χ_2</td>
<td>250 – 330</td>
</tr>
<tr>
<td>χ_3</td>
<td>430 – 540</td>
<td>χ_4</td>
<td>450 – 550</td>
</tr>
<tr>
<td>$\tilde{\chi}_1^\pm$</td>
<td>250 – 330</td>
<td>$\tilde{\chi}_2^\pm$</td>
<td>450 – 550</td>
</tr>
<tr>
<td>\tilde{g}</td>
<td>820 – 1050</td>
<td>\tilde{t}_1</td>
<td>780 – 1050</td>
</tr>
<tr>
<td>\tilde{t}_2</td>
<td>890 – 1170</td>
<td>\tilde{b}_1</td>
<td>850 – 1150</td>
</tr>
<tr>
<td>\tilde{b}_2</td>
<td>930 – 1200</td>
<td>\tilde{u}_R</td>
<td>1160 – 1550</td>
</tr>
<tr>
<td>\tilde{u}_L</td>
<td>1180 – 1560</td>
<td>\tilde{d}_R</td>
<td>1150 – 1550</td>
</tr>
<tr>
<td>\tilde{d}_L</td>
<td>1170 – 1570</td>
<td>$\tilde{\tau}_1$</td>
<td>320 – 860</td>
</tr>
<tr>
<td>$\tilde{\tau}_2$</td>
<td>720 – 1160</td>
<td>\tilde{e}_R</td>
<td>900 – 1360</td>
</tr>
<tr>
<td>\tilde{e}_L</td>
<td>920 – 1380</td>
<td>$\tilde{\nu}_1$</td>
<td>700 – 1160</td>
</tr>
<tr>
<td>$\tilde{\nu}_3$</td>
<td>920 – 1380</td>
<td>h</td>
<td>112.4 – 115.6</td>
</tr>
<tr>
<td>A</td>
<td>165 – 200</td>
<td>H</td>
<td>165 – 200</td>
</tr>
<tr>
<td>A^\pm</td>
<td>150 – 210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Light Higgs spectrum
- Light gauginos: in particular $m_{\tilde{g}} < m_{\tilde{\chi}_1}$ implies that we can have interesting signatures in 3-body ($\tilde{g} \to t\bar{t}\chi_0$) or loop induced 2-body decays ($\tilde{g} \to g\chi_0$)
CHARGED HIGGS PRODUCTION

- **$M_{H^\pm} < M_t$:**

 $p\bar{p} \rightarrow t\bar{t} \rightarrow W^+ b H^- \bar{b} \rightarrow \tau \bar{\nu}, \ell^+ \nu, u\bar{d}$

 \[\sigma_{t\bar{t}}(Tevatron) \sim 7 \text{ pb} \]

 \[\sigma_{t\bar{t}}(LHC) \sim 800 \text{ pb} \]

 8x10^6 tt per year (10 fb⁻¹)

- **$M_{H^\pm} > M_t$:**

 $gg \rightarrow t\bar{b} H^- \rightarrow \bar{t}b, \tau \bar{\nu}$

 $gb \rightarrow tH^-$

 \[\sigma_{t\bar{t}}(LHC) \sim 800 \text{ pb} \]
BRANCHING RATIOS

\begin{align*}
\text{BR}(t \rightarrow H^+ b) & \quad \text{vs} \quad m_{H^+} \text{(GeV)} \\
\text{BR}(H^+ \rightarrow \ell^+ \nu_\ell) & \quad \text{vs} \quad m_{H^+} \text{(GeV)}
\end{align*}
Direct searches at CDF

Dedicated search: $\ell + \tau_h + \not{E}_T + j_b + j$

Interesting region
DIRECT SEARCHES AT CDF

Di-top analysis reinterpretation

Tauonic Higgs Model
CDF Run II Preliminary

- $m_t = 175 \text{ GeV/c}^2$
- $\int L dt = 192 \text{ pb}^{-1}$

$BR(H \rightarrow t \bar{v}) = 1$; $BR(H \rightarrow c \bar{c}) = BR(H \rightarrow t \bar{t}) = BR(H \rightarrow W^+ h^0) = 0$

Interesting region
Di-top analysis reinterpretation: **SUSY analysis**

CDF Run II Preliminary

Excluded 95% CL

$m_t = 175$ GeV/c2

$L dt = 192$ pb$^{-1}$

Theorically inaccessible

- SM Expected
- SM $\pm 1 \sigma$ Expected
- Excluded CDF Run II
- Excluded LEP

LEP (ALEPH, DELPHI, L3 and OPAL)

Assuming $H \rightarrow \tau \nu$ or $H \rightarrow c \bar{c}$ only

- $M_{SUSY} = 1000$ GeV/c2
- $\mu = 500$ GeV/c2
- $A_t = A_b = 2000$ GeV/c2
- $A_\tau = 500$ GeV/c2
- $M_1 = 0.498 M_2$
- $M_2 = M_3 = M_Q = M_U = M_D = M_E = M_L = M_{SUSY}$

Interesting region

Direct searches at CDF
DIRECT SEARCHES AT THE LHC

$p\bar{p} \rightarrow t\bar{t} \rightarrow b\bar{b}W(\ell\nu)H(\tau\nu)$

$p\bar{p} \rightarrow t\bar{t} \rightarrow b\bar{b}W(q\bar{q})H(\tau\nu)$
DIRECT SEARCHES AT THE LHC

\[gg \rightarrow tbH(\tau\nu) \]

The interesting part of the parameter space is covered
• The most promising indirect channels to look for a light charged Higgs scenario are $B_s \rightarrow \mu \mu$ and $B \rightarrow \tau \nu$

• Another possibility is to look for Lepton Flavor Violation
 - $\ell_i \rightarrow \ell_j \gamma$
 - A supersymmetric see-saw generates lepton flavor violating terms in the slepton sector:

\[
\delta_{LL}^{ij} \approx - \frac{3 + a_0^2}{8 \pi^2} \log \left(\frac{M_X}{M_R} \right) (Y_\nu^\dagger Y_\nu)_{ij}
\]

• There is some degree of freedom in the choice of Yukawas of the neutrinos
We adopt a conservative approach and take $y_{\nu_3} \sim 1$ and assume that the mixing is CKM-like.

There is a strong correlation with the muon $g-2$:

$$B(\ell_i \rightarrow \ell_j \gamma) \approx \left[\frac{\Delta a_\mu}{20 \times 10^{-10}} \right]^2 \times \left\{ \begin{array}{c} 1 \times 10^{-13} \left[\frac{\delta_{LL}^{12}}{3 \times 10^{-5}} \right]^2 \\ 1 \times 10^{-9} \left[\frac{\delta_{LL}^{23}}{6 \times 10^{-3}} \right]^2 \end{array} \right\} \begin{array}{c} [\mu \rightarrow e] \\ [\tau \rightarrow \mu] \end{array}.$$

$\mu \rightarrow e\gamma$ can easily reach the sensitivities of MEG.
A very light Higgs and large tanβ, usually generate too large LFV couplings. In our case, they are under control because of the large gaugino-sfermion mass splitting.
CONCLUSIONS

• The Standard Model provides an excellent description of Nature

• Nevertheless, there are some chinks in its armor:
 • Dark Matter, Muon g-2
 • several theoretical biases (Grand Unification, hierarchies, ...)

• New Physics at the Terascale has to be Minimal Flavor Violating

• The interplay between precision searches and direct detection at colliders will play a critical role in identifying new physics

• In two years the world we know will be shattered and the exploration of the unknown will begin..... stay tuned!
BACKUP SLIDES
• Restore the flavor symmetry group of the SM:
\[SU(3)_q^3 = SU(3)_{Q_L} \otimes SU(3)_{U_R} \otimes SU(3)_{D_R} \]

• The Yukawas are replaced by auxiliary fields with a constant background value and with the following transformation properties:
\[Y_U \sim (3, \bar{3}, 1)_{SU(3)_q^3}, \quad Y_D \sim (3, 1, \bar{3})_{SU(3)_q^3} \]

• Yukawa interactions are now invariant under SU(3)\(^3\):
\[\mathcal{L}_Y = \bar{Q}_L Y_D D_R H + \bar{Q}_L Y_U U_R H_c + h.c. \]

• Using the SU(3) symmetry we can rotate the background values of the auxiliary fields \(Y_{U,D} \):
\[Y_U = V_{\text{CKM}}^\dagger \lambda_u^{\text{diag}}, \quad Y_D = \lambda_d^{\text{diag}} \]
MINIMAL FLAVOR VIOLATION

- The only flavor changing structure is:

\[
\lambda_{\text{FC}} = \begin{cases}
 (Y_U Y_U^\dagger)_{ij} & \simeq \lambda_i^2 V_{3i}^* V_{3j} & i \neq j \\
 0 & i = j
\end{cases}
\]

- Generic flavor changing currents:

\[
\bar{Q}_L Y_U Y_U^\dagger Q_L , \quad \bar{D}_R Y_D^\dagger Y_U Y_U^\dagger Q_L , \quad \bar{D}_R Y_D^\dagger Y_U Y_U^\dagger Y_D D_R
\]

\[
\bar{Q}_L \lambda_{\text{FC}} Q_L , \quad D_R \lambda_d \lambda_{\text{FC}} Q_L , \quad D_R \lambda_d \lambda_{\text{FC}} \lambda_d D_R
\]
• If there are more Higgs doublets:
 - \(\lambda_b \) can be large
 - there is a new source of SU(3) breaking

\[
\lambda_{FC}^d = \begin{pmatrix} Y_D & Y_D^\dagger \end{pmatrix}_{ij} \simeq \frac{2m_b^2}{v^2} \tan^2 \beta \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

• In principle we have non-holomorphic Higgs interactions

\[
\epsilon_0 Q_L \lambda_d D_R H_U^c \quad \Longrightarrow \quad \delta m_b = m_b \epsilon_0 \tan \beta
\]
(\textit{G-2})_\mu

- Dominated by the chargino-sneutrino diagram:

\[
\delta a_{\chi^\nu}_\mu^+ \simeq \frac{g_2^2}{32\pi^2} \frac{m_\mu^2 \text{Re}(\mu M_2)}{m_\nu^2} \tan \beta
\]

the sign of the SUSY contribution is \textit{sign}(\mu)

- Theoretical predictions are complicated by non-perturbative effects:
 - ✓ light-by-light scattering
 - ✓ hadronic contribution - can be extracted from \(e^+e^-\) and \(\tau\) data (the latter up to \textit{isospin corrections})

- Experimental and theoretical results read:

\[
a_{\mu}^{\text{exp}} = 11659208(6) \times 10^{-10}
\]
\[
a_{\mu}^{\text{SM}}(ee) = 11659178(6) \times 10^{-10}
\]
\[
a_{\mu}^{\text{SM}}(\tau) = 11659179(7) \times 10^{-10}
\]

\[
\Rightarrow \delta a_{\mu} = (29.3 \pm 8.2) \times 10^{-10}
\]

3.6\sigma effect
The experimental measurement is:

\[
\text{BR}(B \to \tau \nu) = \begin{cases}
(1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})) \times 10^{-4} \\
(1.2 \pm 0.4(\text{stat}) \pm 0.3(\text{bckg}) \pm 0.2(\text{syst})) \times 10^{-4}
\end{cases}
\]

\[
\text{BR}(B \to \tau \nu)^{WA} = (1.42 \pm 0.43) \times 10^{-4}
\]

The SM expectation is (tree-level W exchange):

\[
\text{BR}(B \to \tau \nu) = \frac{G_F^2 m_B m_T^2}{8\pi} \left(1 - \frac{m_T^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B
\]

The supersymmetric corrections interfere destructively with the SM amplitude and are given by

\[
\frac{\text{BR}(B \to \tau \nu)^{\text{SUSY}}}{\text{BR}(B \to \tau \nu)^{\text{SM}}} = \left(1 - \frac{m_B^2}{m_{H^\pm}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right)^2
\]
\[B \rightarrow \tau \nu \]

- \(f_B \) and \(V_{ub} \) are the dominant source of error:
 \[
 f_B = (0.216 \pm 0.022) \text{ GeV} \\
 |V_{ub}| = (4.09 \pm 0.26) \times 10^{-3} \quad \text{[HFAG]}
 \]

- The ratio experiment/SM is, therefore:
 \[
 R(B \rightarrow \tau\nu) = 1.02 \pm 0.40
 \]
• The dipole operators are:

\[
H_{Dipole}^{b \to s \gamma} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[C_7(\mu) \cdot \frac{e m_b}{16\pi^2} \bar{s}_L \sigma_{\mu\nu} b_R F_{\mu\nu} + C_8(\mu) \cdot \frac{g s m_b}{16\pi^2} \bar{s}_L \alpha T^a_{\alpha\beta} \sigma_{\mu\nu} b_R G^{a\mu\nu} \right]
\]

• \(W^+\) and \(H^+\) contributions have the same sign (both negative)

• The sign of the chargino contribution is \(-\text{sign}(A_t \mu)\).
 At the EW scale we have \(A_t \sim -2 \, M_{1/2}\), hence we have destructive and constructive interference for \(\mu > 0\) and \(\mu < 0\), respectively.

• World average: \(\mathcal{B}(B \to X_s \gamma)_{\exp} = (3.55 \pm 0.26) \times 10^{-4}\)

• SM prediction: \(\mathcal{B}(B \to X_s \gamma)_{\text{SM}} = (2.98 \pm 0.26) \times 10^{-4}\)
\(B \rightarrow X_s \gamma \)

- The SM prediction includes NNLO effects

 The charm mass dependence is calculated in the \(m_c \gg m_b/2 \) limit and an extrapolation is used. The exact calculation of the 3-loop matrix element of \(O_2 \) using Mellin-Barnes techniques is being pursued [Boughezal, Czakon, Schutzmeier]

- Becher & Neubert showed that the standard OPE is valid only for cuts on the photon energy of about 1 \(GeV \).

- In order to get a reliable prediction for a more realistic cut of 1.6 \(GeV \), effective theory techniques (SCET RGE) have to be used:

\[
BR(B \rightarrow X_s \gamma)_{E_\gamma > 1.6 \text{GeV}} = 3.15 \times 10^{-4} \quad \text{[normal OPE]}
\]

\[
BR(B \rightarrow X_s \gamma)_{E_\gamma > 1.6 \text{GeV}} = 2.98 \times 10^{-4} \quad \text{[SCET approach]}
\]
$\mathcal{B}(E_\gamma > 1 \text{ GeV}) - \mathcal{B}(E_\gamma > 1.6 \text{ GeV})$

$\mathcal{B}(E_\gamma > 1 \text{ GeV})$

Becher & Neubert
$O(\alpha_s^2)$ partially resummed

$O(\alpha_s^2)$ fixed order

$O(\alpha_s)$ fixed order
For simplicity, let us set $C_i(\mu_b) \to 0$ for $i \neq 7$. Then, in the “fixed order”:

$$\mathcal{B}(E_\gamma > E_0)/\mathcal{B}_{\text{total}} = 1 + \frac{\alpha_s(\mu_b)}{\pi} \phi^{(1)}(E_0) + \left(\frac{\alpha_s(\mu_b)}{\pi}\right)^2 \phi^{(2)}(E_0) + \ldots$$

$$\phi^{(1)}(E_0) = \phi^{(1)}_a(E_0) + \phi^{(1)}_b(E_0)$$

$$\phi^{(1)}_b = \frac{10}{3} \delta + \frac{1}{3} \delta^2 - \frac{2}{9} \delta^3 + \frac{1}{3} \delta (\delta - 4) \ln \delta = \frac{31}{9} - \frac{7}{3} x - \frac{1}{2} x^2 - \frac{1}{9} x^3 - \frac{5}{36} x^4 + \mathcal{O}(x^5)$$

$$x = \frac{2E_0}{m_b}$$

$$\delta = 1 - x$$

$$\phi^{(1)}_a = -\frac{31}{9} - \frac{2}{3} \ln^2 \delta - \frac{7}{3} \ln \delta = -\frac{31}{9} + \frac{7}{3} x + \frac{1}{2} x^2 + \frac{1}{9} x^3 - \frac{1}{36} x^4 + \mathcal{O}(x^5)$$

Terms up to $\mathcal{O}(x^3)$ must cancel out.
The same pattern arises at $O(\alpha_s^2)$:

$$\phi^{(2)}_b \quad x = 2E_0/m_b$$

$$\phi^{(2)}_a \quad \delta = 1 - x$$

It must be the case also at higher orders because:

$$\ln \delta = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 + O(x^4)$$

However, only “const + logs(δ)” have been included at orders $O(\alpha_s^3)$ and higher in hep-ph/0610067.
OTHER OBSERVABLES

- B_s mass difference (ΔM_{Bs})
 - Proportional to $(\tan \beta)^4$
 - Cancellation $m_H - m_A$ implies m_s/m_b suppression

- Dark matter relic density (Ωh^2)
 - Experimental errors are tiny (4%)
 - Theory uncertainties are much larger
 - Parametric errors (e.g. M_t) and uncertainties in the RGE running from the GUT to the EW scales (especially in the large tanβ region) impact strongly the calculation of Ωh^2
 - Points for which Ωh^2 is too small can be recovered by some other dark matter candidate
 - We impose only a loose upper bound: $\Omega h^2 < 0.13$ (99% C.L.)
\[m_A^2 = M_{H_d}^2(m_t) - M_{H_u}^2(m_t) - m_Z^2 \]

- The running of \(M_{H_u} \) is driven by the large Yukawa of the top. Hence we always have \(m_{H_u}^2(m_t) < 0 \):

\[m_{H_u}^2(m_t) \simeq -0.12 M_0^2 - 2.7 M_{1/2}^2 + 0.4 A_0 M_{1/2} - 0.1 A_0^2 \]

- The running of \(M_{H_d} \) depends strongly on \(\tan\beta \)
 - For moderate \(\tan\beta \) (< 10): \(m_{H_d}^2(m_t) > 0 \)
 - For large \(\tan\beta \), the bottom Yukawa plays a more important role until the limiting case \(m_{H_d}^2(m_t) \simeq m_{H_u}^2(m_t) < 0 \)

- Low \(m_A \) can only be achieved at large \(\tan\beta \)
The LSP condition $m_\tilde{\tau} > m_{\tilde{\chi}_0}$ implies a lower bound on M_0

- The absence of charge and color breaking minima implies $|A_0| < 3M_0$

- Both $B\to X_s\gamma$ and $B_s\to \mu\mu$, require a small A_t

- An approximate formula is: $A_t = 0.25A_0 - 2M_{1/2}$

- We need large A_0 and small $M_{1/2}$

- Under these conditions the chargino contribution to ϵ_Y decreases and the gluino one is increased (i.e. more efficient cancellation)

- We need large $\tan\beta$, large A_0, large M_0 and small $M_{1/2}$
The soft breaking terms are:

\[M_i = N \Lambda \tilde{\alpha}_i g(x) \equiv \tilde{M}_i g(x) \]

\[M_A^2 = 2 N \Lambda^2 \left[C_3 \tilde{\alpha}_3 + C_2 \tilde{\alpha}_2 + 3/5 Y^2 \tilde{\alpha}_1 \right] f(x) \]

The Higgs mass squared are controlled by RGE effects and are essentially proportional to \(M_3 \); hence:

\[M_A^2 \simeq M_{H_d}^2 - M_{H_u}^2 \simeq (C_d - C_u) M_3^2 \]

The lower limit on the stau mass, sets a lower limit on \(M_1 \) and hence a stronger lower limit on \(M_3 \):

\[m_{\tilde{\tau}_1}^2 \sim m_{\tilde{\tau}_R}^2 \sim 6/5 M_1^2 > (100 \text{ GeV})^2 \implies M_3 > 1350 \text{ GeV} \]

\[M_A < 200 \text{ GeV} \] implies, therefore, the strong fine-tuning \(C_d - C_u \sim 10^{-2} \)
The soft breaking terms are:

\[M_i = \frac{1}{g_i} \beta_i m_{3/2} \]

\[M_A^2 = \frac{1}{2} \gamma_A m_{3/2}^2 + m_0^2 Y_A \]

\[A_A = \beta_{Y_A} m_{3/2} \]

The squared scalar masses tend to be tachyonic and Fayet-Iliopoulos D-terms were added (strong model dependence). As a consequence it is extremely easy to obtain a light \(M_A \). A correct EWSB is obtained only for moderate \(\tan \beta \), therefore the phenomenology of these models (for light \(M_A \)) is less interesting.