### THE ROLE OF PRECISION STUDIES IN THE QUEST FOR NEW PHYSICS

ENRICO LUNCHI

# OUTLINE

- The Standard Model
- Open questions and possible solutions
- How to establish new physics
- Status of New Physics searches
- A journey in supersymmetry

## THE STANDARD MODEL

## THE STANDARD MODEL

- The SM is a Quantum Field Theory: fusion of Special Relativity and Quantum Mechanics
- There are three main ingredients:
  - Forces: SU(3)<sub>c</sub> x SU(2)<sub>W</sub> x U(1)<sub>Y</sub>
  - Matter: quarks, leptons, gauge bosons
  - Spontaneous Symmetry Breaking: mass generation

# THE STANDARD MODEL

- The SM is a Quantum Field Theory: fusion of Special Relativity and Quantum Mechanics
- There are three main ingredients:
  - Forces: SU(3)<sub>c</sub> x SU(2)<sub>W</sub> x U(1)<sub>Y</sub>
  - Matter: quarks, leptons, gauge bosons
  - Spontaneous Symmetry Breaking: mass generation

where the problems begin

# FERMION MASSES

### • Transformation properties under SU(3) x SU(2) x U(1)

$$egin{pmatrix} u_L^a \ d_L^a \end{pmatrix} &= (\mathbf{3}, \, \mathbf{2}, \, +\mathbf{1/3}) \ u_R^a &= (\mathbf{3}, \, \mathbf{1}, \, +\mathbf{4/3}) \ d_R^a &= (\mathbf{3}, \, \mathbf{1}, \, -\mathbf{2/3}) \ (H^+ \ H^0 \end{pmatrix} &= (\mathbf{1}, \, \mathbf{2}, \, +\mathbf{1}) \end{array}$$

• Fermion mass terms are forbidden?  $(u_L,d_L)$  are a SU(2) doublet  $u_R$  and  $d_R$  are SU(2) singlets



- We have a problem with Weak Interactions Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)
- Spontaneous Symmetry Breaking:  $SU(3)_s \ge SU(2)_W \ge U(1)_Y \rightarrow SU(3)_s \ge U(1)_{em}$

- We have a problem with Weak Interactions Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)
- Spontaneous Symmetry Breaking:  $SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{em}$



- We have a problem with Weak Interactions Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)
- Spontaneous Symmetry Breaking:  $SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{em}$



- We have a problem with Weak Interactions Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)
- Spontaneous Symmetry Breaking:  $SU(3)_s \ge SU(2)_W \ge U(1)_Y \rightarrow SU(3)_s \ge U(1)_{em}$



- We have a problem with Weak Interactions Exact SU(2) gauge invariance requires massless fermions and vector bosons (W and Z)
- Spontaneous Symmetry Breaking:  $SU(3)_s \times SU(2)_W \times U(1)_Y \rightarrow SU(3)_s \times U(1)_{em}$





 A scalar SU(2) doublet (Φ) acquires a non-vanishing constant value over the whole space (v.e.v.)

• The W and Z become massive

• A neutral scalar particle of unknown mass emerges (h)

• The Higgs is a SU(2) doublet with a vev:

 $\mathcal{L}_Y = \bar{Q}_L Y_d H d_R + \bar{Q}_L Y_u H^{\dagger} u_R + \text{h.c.}$ 

after EWSB

 $\mathcal{L}_m = \bar{d}_L(vY_d)d_R + \bar{u}_L(vY_u)u_R + \text{h.c.}$ 

# OPEN QUESTIONS

GRAVITY

- General Relativity is hard to quantize:
  - naive approaches fail
  - loop gravity, superstrings theories
- Typical scale associated with gravity:

 $M_{pl} = G_N^{-1/2} = 1.22 \times 10^{19} \text{ GeV}$ 

## GRAND UNIFICATION

• The strength of the SM interactions depend strongly on the energies (Q) of the interacting particles



 $M_{GUT} \sim 10^{16} \text{ GeV}$ 

## GRAND UNIFICATION

• The strength of the SM interactions depend strongly on the energies (Q) of the interacting particles



# HIGGS?



## HIERARCHY PROBLEM

- Embed the SM into a theory that contains very large scales (M<sub>pl</sub>, M<sub>GUT</sub>)
- Quantum fluctuations produce enormous masses for all particles not protected by a symmetry
- Fermions are protected by chirality, Gauge bosons receive masses close to the Higgs vev, the Higgs boson is unprotected:

 $\delta m_H \sim M_{GUT} \sim 10^{16} \text{ GeV}$  $(m_H)_{\text{fit}} \sim 10^2 \text{ GeV}$ 

# DARK MATTER



WMAP

### DARK MATTER

1200



# $\Omega_{\rm DM} h^2 = 0.1047^{+0.007}_{-0.0013}$

PARAMETERS

- The Gauge part of the SM depends on 4 parameters:  $\alpha_1, \alpha_2, \alpha_3, \theta_{QCD}$
- Electroweak Symmetry Breaking introduces other 15 parameters:

 $m_e, m_\mu, m_\tau, m_u, m_d, m_s, m_c, m_b, m_t$ 

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $m_H, \langle H \rangle$ 

### FLAVOR VIOLATION

- Yukawa Lagrangian:  $\mathcal{L}_Y = \bar{Q}_L^0 Y_d H d_R^0 + \bar{Q}_L^0 Y_u H^{\dagger} u_R^0 + h.c.$
- Gauge interactions:  $\mathcal{L}_{gauge} \sim \bar{u}_L^0 W d_L^0 + \bar{u}^0 Z u^0 + \bar{d}^0 Z d^0$
- Quark Mass Eigenstate Basis:  $u_A = U_A u_A^0$  and  $d_A = D_A d_A^0$  (A=L,R)  $\mathcal{L}_{gauge} \sim \bar{u}_L V_{CKM} / M d_L + \bar{u} / Z u + \bar{d} / Z d$  with  $V_{CKM} = U_L D_L^{\dagger}$
- Of the four initial unitary matrices ( $U_{L,R}$  and  $D_{L,R}$ ), only one is observable ( $V_{CKM}$ )

### FLAVOR VIOLATION

- No Flavor Changing Neutral Currents at tree level
- FCNC suppressed also at the loop level (GIM):

$$\underbrace{b \qquad M_{i} \qquad S}_{u_{i} \qquad S} \propto V_{ib}V_{is}^{*} f\left(\frac{m_{u_{i}}^{2}}{m_{W}^{2}}\right) \sim V_{tb}V_{ts}^{*} \left[f\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right) - f(0)\right]$$

 These features have fantastic experimental implications and are a consequence of the (arbitrary) decision of introducing only one Higgs doublet

## POSSIBLE SOLUTIONS

# SUPERSYMMETRY

- Double number of particles (degrees of freedom)
- New symmetry at the TeV scale protects the Higgs mass
- Lightest sparticle provides a dark matter candidate
- Exact unification of em, weak and strong interactions
- Relieves the tension between direct and indirect Higgs bounds



# SUPERSYMMETRY

- Double number of particles
- New symmetry at the TeV scale protects the Higgs mass
- Lightest sparticle provides a dark matter candidate
- Exact unification of em, weak and strong interactions
- Relieves the tension between direct and indirect Higgs bounds



# SUPERSYMMETRY

- Double number of particles
- New symmetry at the TeV scale protects the Higgs mass
- Lightest sparticle provides a dark matter candidate
- Exact unification of em, weak and strong interactions
- Relieves the tension between direct and indirect Higgs



indirect
direct SM
direct MSSM

# OTHER OPTIONS

### • Extra Dimensions

Elimination of the Planck scale
 Some of the other problems

 can be tackled

$$M_{pl} = M_{EW} \ e^{kr_c\pi}$$



Technicolor

Higgs as a bound state of a strong force at the TeV scale

Little Higgs
 Higgs as a pseudo-Goldstone boson
 "Modern incarnation of technicolor"

### COMPLEMENTARITY

• Direct detection at Colliders (Tevatron, LHC)

 Indirect detection at B factories (BaBar, Belle), LHCb, super-B factories, rare K decays, Project-X, CLEO-c, LFV experiments (MEG),...

• *Cosmology*: dark matter relic density, direct dark matter detection (CDMS,...)

### COMPLEMENTARITY

### Direct detection



### Indirect detection



#### Establish new particles

Quantum structure

# STATUS OF NEW PHYSICS SEARCHES

# ELECTROWEAK FITS

|                                             | Measurement           | Fit     | O <sup>mea</sup> | <sup>s</sup> –O <sup>fit</sup>  /σ <sup>meas</sup><br>1 2 3 | s<br>3 |
|---------------------------------------------|-----------------------|---------|------------------|-------------------------------------------------------------|--------|
| $\overline{\Delta \alpha_{had}^{(5)}(m_Z)}$ | $0.02758 \pm 0.00035$ | 0.02768 |                  |                                                             | Ĩ      |
| m <sub>z</sub> [GeV]                        | $91.1875 \pm 0.0021$  | 91.1875 |                  |                                                             |        |
| Γ <sub>z</sub> [GeV]                        | $2.4952 \pm 0.0023$   | 2.4957  | -                |                                                             |        |
| $\sigma_{had}^{0}$ [nb]                     | $41.540 \pm 0.037$    | 41.477  |                  |                                                             |        |
| R <sub>I</sub>                              | $20.767 \pm 0.025$    | 20.744  | -                |                                                             |        |
| A <sup>0,I</sup> <sub>fb</sub>              | $0.01714 \pm 0.00095$ | 0.01645 | -                |                                                             |        |
| A <sub>I</sub> (P <sub>τ</sub> )            | $0.1465 \pm 0.0032$   | 0.1481  | -                |                                                             |        |
| R <sub>b</sub>                              | $0.21629 \pm 0.00066$ | 0.21586 | -                |                                                             |        |
| R <sub>c</sub>                              | $0.1721 \pm 0.0030$   | 0.1722  |                  |                                                             |        |
| A <sup>0,b</sup> <sub>fb</sub>              | $0.0992 \pm 0.0016$   | 0.1038  |                  |                                                             |        |
| A <sup>0,c</sup> <sub>fb</sub>              | $0.0707 \pm 0.0035$   | 0.0742  |                  |                                                             |        |
| A <sub>b</sub>                              | $0.923 \pm 0.020$     | 0.935   | -                |                                                             |        |
| A <sub>c</sub>                              | $0.670 \pm 0.027$     | 0.668   |                  |                                                             |        |
| A <sub>I</sub> (SLD)                        | $0.1513 \pm 0.0021$   | 0.1481  |                  |                                                             |        |
| $sin^2 \theta_{eff}^{lept}(Q_{fb})$         | $0.2324 \pm 0.0012$   | 0.2314  | -                |                                                             |        |
| m <sub>w</sub> [GeV]                        | 80.398 ± 0.025        | 80.374  |                  |                                                             |        |
| Г <sub>w</sub> [GeV]                        | $2.140 \pm 0.060$     | 2.091   |                  |                                                             |        |
| m <sub>t</sub> [GeV]                        | 170.9 ± 1.8           | 171.3   | -                |                                                             |        |
|                                             |                       |         | 0                | 1 2 ;                                                       | 3      |

# UNITARITY TRIANGLE

 Unitarity of the CKM matrix implies relations between the various elements

 $(\varrho,\eta)$ 

α

 $V^*_{ub}$ 

/\*

(0,0)

cb

 $V_{td}$ 

 $V_{cb}^*$ 

ß

Focus on the smallest elements

• 
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$



### UNITARITY TRIANGLE



### UNITARITY TRIANGLE


## HINTS FOR NEW PHYSICS!

- Dark Matter relic density:
  - $\Omega h^2 = 0.1047^{+0.007}_{-0.0013} \qquad 80 \sigma$
- Muon anomalous magnetic moment

|                    | $a_{\mu}^{\mathrm{exp}}$    | = | $11659208(6) \times 10^{-10}$ |  |
|--------------------|-----------------------------|---|-------------------------------|--|
| problem<br>solved? | $a_{\mu}^{\mathrm{SM}}(ee)$ | = | $11659178(6) \times 10^{-10}$ |  |
|                    | $a_{\mu}^{ m SM}(	au)$      | = | $11659179(7) \times 10^{-10}$ |  |



 $\delta a_{\mu} = (29.3 \pm 8.2) \times 10^{-10}$  3.6  $\sigma$ 

## LATEST FROM CLEO

• The width for  $D_s \to \ell \nu$  is

$$\Gamma(D_s \to \ell \nu) = \frac{m_{D_s}}{8\pi} |G_F V_{cs}^* m_\ell| f_{D_s}^2 \left( 1 - \frac{m_\ell^2}{m_{D_s}^2} \right)^2$$

- $f_{Ds}$  is extracted from data and lattice-QCD:  $(f_{D_s})_{exp} = (277 \pm 9) MeV$  [CLEO]
  - $(f_{D_s})_{\text{exp}}$  (2.1 ± 0) MeV [HPQCD]  $(f_{D_s})_{\text{QCD}}$  =  $(241 \pm 3) \text{MeV}$  [HPQCD]
- The discrepancy is at the 3.8σ level
- Requires *non-MFV* new physics! leptoquarks,...
- Independent cross check of the lattice result needed

## WHAT DOES THIS MEAN?

### TWO SCENARIOS



### TWO SCENARIOS

#### • Decoupling

- New Physics is very heavy (>> TeV )
- Arbitrary Flavor Changing couplings

## TWO SCENARIOS

#### • Decoupling

- New Physics is very heavy (>> TeV )
- Arbitrary Flavor Changing couplings

#### • Minimal Flavor Violation

discoveries at LHC

- The amazing agreement of *B* factories measurements with the SM predictions is a *powerful test of the CKM mechanism*
- Relatively light new particles with <u>CKM-like couplings</u>
- Correlation between Tevatron/LHC results and low-energy data

*deviations in precision experiments* 

### MINIMAL FLAVOR VIOLATION

• We adopt the definition of D'Ambrosio, Giudice, Isidori and Strumia: the only relevant information contained in the quark Yukawa's are the eigenvalues and the CKM matrix:

$$Y_U = D_L V_{\mathsf{CKM}}^{\dagger} \lambda_u^{diag} U_R \ , \ Y_D = D_L \lambda_d^{diag} D_R$$

where the matrices  $U_{R}$ ,  $D_{L}$  and  $D_{R}$  are unphysical.

- Can be implemented as an *exact symmetry* of the theory (!)
- The structure of Flavor Changing Neutral Currents usually follows the CKM pattern
- If new physics is fairly light ( < 1 TeV) deviations are unavoidable

#### A JOURNEY IN SUSY: HOW LIGHT CAN THE HIGGS SPECTRUM BE?

# REALISTIC MODELS

- R-parity (dark matter candidate)
- Grand Unification



Radiative ElectroWeak Symmetry Breaking



Minimal Flavor Violation

## TWO HIGGS DOUBLETS

- Any supersymmetric model requires two Higgs doublets (*H<sub>u</sub>*, *H<sub>d</sub>*)
- The Higgs spectrum is much richer: three neutral Higgses (*h*,*H*,*A*) and one charged Higgs (*H*<sup>+</sup>)
- There are two vev's: one for each doublet

$$\frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle} = \tan \beta$$

## SUSY BREAKING

 Absence of super-partners degenerate in mass with the SM particles implies that SUSY must be spontaneously broken



Supergravity inspired MSSM (SUGRA) Gauge Mediation (GM)

# SOFT BREAKING TERMS

• Squark mass terms:

 $\mathcal{L}_{\text{soft}}^{squarks} = \tilde{Q}^{\dagger} M_Q^2 \tilde{Q} + \tilde{U}^{\dagger} M_U^2 \tilde{U} + \tilde{D}^{\dagger} M_D^2 \tilde{D} + \tilde{Q} Y_U^A H_u \tilde{U} + \tilde{Q} Y_D^A H_d \tilde{D}$ 

• Sleptons mass terms:

 $\mathcal{L}_{\text{soft}}^{sleptons} = \tilde{L}^{\dagger} M_{L}^{2} \tilde{L} + \tilde{E}^{\dagger} M_{E}^{2} \tilde{E} + \tilde{L} Y_{D}^{E} H_{d} \tilde{E}$ 

• Gauginos mass terms:

$$\mathcal{L}_{\text{soft}}^{gauginos} = \frac{1}{2} \left( M_1 \tilde{B}B + M_2 \tilde{W}W + M_3 \tilde{g}g \right)$$

• Higgs mass terms:

 $\mathcal{L}_{\text{soft}}^{higgs} = \mu B H_1 H_2 + M_1^2 H_1^2 + M_2^2 H_2^2$ 

## MSSM WITH MFV

• General soft-breaking terms:  

$$\mathcal{L}_{\text{soft}}^{squarks} = \tilde{Q}^{\dagger} M_Q^2 \tilde{Q} + \tilde{U}^{\dagger} M_U^2 \tilde{U} + \tilde{D}^{\dagger} M_D^2 \tilde{D} + \tilde{Q} Y_U^A H_u \tilde{U} + \tilde{Q} Y_D^A H_d \tilde{D}$$

$$\mathcal{L}_{\text{soft}}^{sleptons} = \tilde{L}^{\dagger} M_L^2 \tilde{L} + \tilde{E}^{\dagger} M_E^2 \tilde{E} + \tilde{L} Y_D^E H_d \tilde{E}$$

$$\mathcal{L}_{\text{soft}}^{gauginos} = \frac{1}{2} \left( M_1 \tilde{B} B + M_2 \tilde{W} W + M_3 \tilde{g} g \right)$$

$$\mathcal{L}_{\text{soft}}^{higgs} = \mu B H_1 H_2 + M_1^2 H_1^2 + M_2^2 H_2^2$$

• MFV soft-breaking terms:

$$M_Q^2 = m_Q^2 \left( 1 + b_1 Y_U Y_U^{\dagger} + b_2 Y_D Y_D^{\dagger} + b_3 Y_D Y_D^{\dagger} Y_U Y_U^{\dagger} + b_4 Y_U Y_U^{\dagger} Y_D Y_D^{\dagger} \right)$$
  

$$M_U^2 = m_U^2 \left( 1 + b_5 Y_U^{\dagger} Y_U \right)$$
  

$$M_D^2 = m_D^2 \left( 1 + b_6 Y_D^{\dagger} Y_D \right)$$
  

$$A_U = a_U \left( 1 + b_7 Y_D Y_D^{\dagger} \right) Y_U$$
  

$$A_D = a_D \left( 1 + b_8 Y_U Y_U^{\dagger} \right) Y_D$$

## MSSM WITH MFV

#### • mSugra:

- $M_{1/2}, M_0, A_0, \tan\beta, \operatorname{sign}(\mu)$
- Non Universal Higgs Mass (NUHM) MSSM:  $M_{1/2}, M_0, M_{H_1}, M_{H_2}, A_0, \tan\beta, \operatorname{sign}(\mu)$

#### • Most general MFV MSSM:

 $(M_Q^2)_{ij} = M_Q^2 \ \delta_{ij}, \quad (M_U^2)_{ij} = M_U^2 \ \delta_{ij}, \quad (M_D^2)_{ij} = M_D^2 \ \delta_{ij},$  $(M_L^2)_{ij} = M_L^2 \ \delta_{ij}, \quad (M_E^2)_{ij} = M_E^2 \ \delta_{ij}, \qquad M_{H_1}^2, \qquad M_{H_2}^2,$  $(Y_U^A)_{ij} = A_U e^{i\phi_{A_U}} (Y_U)_{ij}, \quad (Y_D^A)_{ij} = A_D e^{i\phi_{A_D}} (Y_D)_{ij},$  $(Y_E^A)_{ij} = A_E e^{i\phi_{A_E}} (Y_E)_{ij},$ 

## HIGGS-MEDIATED FCNC

• In the MSSM at large tanβ there are tree-level Higgs-mediated FCNC's:

$$\mathcal{L}_{\mathsf{Y}} = -\bar{d}_{\mathsf{L}} Y^{d} d_{\mathsf{R}} H_{1} + \bar{d}_{\mathsf{L}} \left( \Delta Y^{d} \right) d_{\mathsf{R}} H_{2}^{*} + \bar{u}_{\mathsf{L}} Y^{u} u_{\mathsf{R}} H_{2} + \bar{u}_{\mathsf{L}} \left( \Delta Y^{u} \right) u_{\mathsf{R}} H_{1}^{*}$$

• For instance the b<sub>R</sub>-s<sub>L</sub>-Higgs coupling reads:

$$\mathcal{L}_S = \frac{ig_2}{2M_W} m_b \frac{(\epsilon_Y^{\tilde{\chi}^-} + \epsilon_Y^{\tilde{g}})V_{ts}\tan^2\beta}{(1+\epsilon_0\tan\beta)^2} \bar{b}_R s_L S + h.c.$$

induced from RG running

 $H_2$ 

 $A_t y_t$ 

 $y_b$   $\tilde{h}_1^- \mu$   $\tilde{h}_2^- y_t$ 

 $t_R$ 

SI.

 $\tilde{t}_L$ 

 $b_R$ 

• In SUSY models with Grand Unification and Minimal Flavor Violation:

$$\operatorname{sign}\left(\epsilon_Y^{\tilde{\chi}^-}/\epsilon_Y^{\tilde{g}}\right) < 0$$

 $\rightarrow \mu \mu$ 

 $\sim \tan^3 \beta / M_A^2$ h, H, A

• The experimental bound and the SM predictions are:  $BR(B_s \to \mu\mu)_{exp} < 5.8 \times 10^{-8} \text{ at } 90\% \ C.L. \ [CDF\&D0]$  $BR(B_s \to \mu\mu)_{SM} = (3.8 \pm 1.0) \times 10^{-9}$ 

In GUT MFV SUSY models the branching ratio reads

$$BR(B_s \to \mu^+ \mu^-) \simeq \frac{4 \times 10^{-8}}{[1 + 0.5 \times \frac{\tan\beta}{50}]^4} \left[\frac{\tan\beta}{50}\right]^6 \left(\frac{160 \text{ GeV}}{M_A}\right)^4 \left(\frac{\epsilon_Y^{\tilde{\chi}^-} + \epsilon_Y^{\tilde{g}}}{4 \times 10^{-4}}\right)^4$$

 In our models the chargino contribution can easily be ~ 3 x 10<sup>-3</sup>. The sum of chargino and gluino is naturally in the few x 10<sup>-4</sup> range

## OTHER OBSERVABLES

• Muon Anomalous Magnetic Moment:

$$\delta a_{\mu}^{\chi \tilde{\nu}} \simeq \frac{g_2^2}{32\pi^2} \frac{m_{\mu}^2 \operatorname{Re}(\mu M_2) \tan \mu}{m_{\tilde{\nu}}^2}$$
$$\delta a_{\mu} = (29.3 \pm 8.2) \times 10^{-10}$$

#### 3.6σ deviation

•  $B \rightarrow \tau \nu$ 

$$R(B \to \tau\nu) = \frac{\text{BR}(B \to \tau\nu)^{\text{SUSY}}}{\text{BR}(B \to \tau\nu)^{\text{SM}}} = \left(1 - \frac{m_B^2}{m_{H^{\pm}}^2} \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right)^2$$
$$R(B \to \tau\nu)^{\text{exp}} = 1.02 \pm 0.40 \qquad \text{complete agreement}$$

## OTHER OBSERVABLES

• 
$$B \rightarrow X_s \gamma$$

 $\mathcal{B}(B \to X_s \gamma)_{\text{exp}} = (3.55 \pm 0.26) \times 10^{-4}$  $\mathcal{B}(B \to X_s \gamma)_{\text{SM}} = (2.98 \pm 0.26) \times 10^{-4}$ 

- Dark Matter relic density  $\Omega h^2 < 0.13 \; (99\% \; \mathrm{C.L.})$
- B<sub>s</sub> mass difference
   Not a constraint in these models

## MINIMAL SUPERGRAVITY





green: direct bounds

black: direct constraints upper bound on  $\Omega h^2$ 

red: direct constraints upper bound on  $\Omega h^2$ B $\rightarrow \tau \nu$ 

In the surviving region the  $B \rightarrow \tau v$  amplitude is negative:



# NON-UNIVERSAL HIGGS MASS



green: direct bounds

black: direct constraints upper bound on  $\Omega h^2$ 

red: direct constraints upper bound on  $\Omega h^2$ B $\rightarrow \tau \nu$ 

We can have light Higgses with smaller tanβ The B→τv amplitude can have both signs

## COLLIDER IMPLICATIONS

# DIRECT SEARCHES AT COLLIDERS

|                   | $\max (GeV)$    |                 | mass (GeV)  |
|-------------------|-----------------|-----------------|-------------|
| $\chi_1$          | 130 - 180       | $\chi_2$        | 250 - 330   |
| $\chi_3$          | 430 - 540       | $\chi_4$        | 450 - 550   |
| $\chi_1^{\pm}$    | 250 - 330       | $\chi_2^{\pm}$  | 450 - 550   |
| $\tilde{g}$       | 820 - 1050      |                 |             |
| $\tilde{t}_1$     | 780 - 1050      | $\tilde{t}_2$   | 890 - 1170  |
| $\tilde{b}_1$     | 850 - 1150      | $\tilde{b}_2$   | 930 - 1200  |
| $\tilde{u}_R$     | 1160 - 1550     | $\tilde{u}_L$   | 1180 - 1560 |
| $ $ $\tilde{d}_R$ | 1150 - 1550     | $  \tilde{d}_L$ | 1170 - 1570 |
| $	ilde{	au_1}$    | 320 - 860       | $	ilde{	au}_2$  | 720 - 1160  |
| $\tilde{e}_R$     | 900 - 1360      | $\tilde{e}_L$   | 920 - 1380  |
| $\tilde{ u}_1$    | 700 - 1160      | $\tilde{\nu}_3$ | 920 - 1380  |
| h                 | (112.4 - 115.6) | H               | 165 - 200   |
| A                 | 165 - 200       | $H^{\pm}$       | (150 - 210) |

#### Light Higgs spectrum

Light gauginos: in particular m<sub>˜g</sub> < m<sub>˜q</sub> implies that we can have interesting signatures in 3-body (*˜*g → tt¯χ<sup>0</sup>) or loop induced 2-body decays (*˜*g → gχ<sup>0</sup>)

## CHARGED HIGGS PRODUCTION

#### • $M_{H^{\pm}} < M_t$ :

 $\sigma_{t\bar{t}}$ (Tevatron) ~ 7 pb  $\sigma_{t\bar{t}}$ (LHC) ~ 800 pb  $\checkmark$ 8x10<sup>6</sup> tt per year (10 fb<sup>-1</sup>)

• 
$$M_{H^{\pm}} > M_t$$
:  
 $gg \rightarrow t\bar{b}H^-$   
 $\downarrow \qquad \downarrow \ \bar{t}b, \tau\bar{\nu}$   
 $gb \rightarrow tH^-$ 



## BRANCHING RATIOS



## DIRECT SEARCHES AT CDF

Dedicated search:  $\ell + \tau_h + E_T + j_b + j$ 



#### Interesting region

## DIRECT SEARCHES AT CDF

#### Di-top analysis reinterpretation



Interesting region

# DIRECT SEARCHES AT CDF

#### Di-top analysis reinterpretation: SUSY analysis



## DIRECT SEARCHES AT THE LHC

 $p\bar{p} \rightarrow t\bar{t} \rightarrow bbW(\ell\nu)H(\tau\nu)$ 



#### $p\bar{p} \to t\bar{t} \to b\bar{b}W(q\bar{q})H(\tau\nu)$



## DIRECT SEARCHES AT THE LHC

 $gg \rightarrow tbH(\tau\nu)$ 



The interesting part of the parameter space is covered

# INDIRECT SEARCHES

- The most promising indirect channels to look for a light charged Higgs scenario are  $B_s \rightarrow \mu\mu$  and  $B \rightarrow \tau\nu$
- Another possibility is to look for Lepton Flavor Violation •  $\ell_i \rightarrow \ell_j \gamma$ 
  - A supersymmetric see-saw generates lepton flavor violating terms in the slepton sector:

$$\delta_{LL}^{ij} \approx -\frac{(3+a_0^2)}{8\pi^2} \log\left(\frac{M_X}{M_R}\right) (Y_{\nu}^{\dagger} Y_{\nu})_{ij}$$

There is some degree of freedom in the choice of Yukawas of the neutrinos

## LEPTON FLAVOR VIOLATION

- We adopt a conservative approach and take  $y_{\nu_3} \sim 1$  and assume that the *mixing is CKM-like*
- There is a strong correlation with the muon g-2:

$$\mathcal{B}(\ell_i \to \ell_j \gamma) \approx \left[ \frac{\Delta a_{\mu}}{20 \times 10^{-10}} \right]^2 \times \begin{cases} 1 \times 10^{-13} \left| \frac{\delta_{LL}^{12}}{3 \times 10^{-5}} \right|^2 & [\mu \to e] ,\\ 1 \times 10^{-9} \left| \frac{\delta_{LL}^{23}}{6 \times 10^{-3}} \right|^2 & [\tau \to \mu] . \end{cases}$$

•  $\mu \rightarrow e \gamma$  can easily reach the sensitivities of MEG

## INDIRECT SEARCHES: LFV



A very light Higgs and large  $tan\beta$ , usually generate too large LFV couplings. In our case, they are under control because of the large gaugino-sfermion mass splitting

# CONCLUSIONS

- The Standard Model provides an excellent description of Nature
- Nevertheless, there are some chinks in its armor:
  - Dark Matter, Muon g-2
  - several theoretical biases (*Grand Unification, hierarchies,* ...)
- New Physics at the Terascale has to be *Minimal Flavor Violating*
- The interplay between *precision searches* and *direct detection* at colliders will play a critical role in identifying new physics
- In two years the world we know will be shattered and the exploration of the unknown will begin..... stay tuned!



# MINIMAL FLAVOR VIOLATION

- Restore the flavor symmetry group of the SM:  $SU(3)_q^3 = SU(3)_{Q_L} \otimes SU(3)_{U_R} \otimes SU(3)_{D_R}$
- The Yukawas are replaced by auxiliary fields with a constant background value and with the following transformation properties: *Y*<sub>U</sub> ~ (3, 3, 1)<sub>SU(3)<sup>3</sup><sub>q</sub></sub>, *Y*<sub>D</sub> ~ (3, 1, 3)<sub>SU(3)<sup>3</sup><sub>q</sub></sub>
- Yukawa interactions are now invariant under SU(3)<sup>3</sup>:

$$\mathcal{L}_Y = \bar{Q}_L Y_D D_R H + \bar{Q}_L Y_U U_R H_c + h.c.$$

• Using the SU(3) symmetry we can rotate the background values of the auxiliary fields Y<sub>U,D</sub>:

$$Y_U = V_{\mathsf{CKM}}^{\dagger} \lambda_u^{diag} \ , \ Y_D = \lambda_d^{diag}$$

## MINIMAL FLAVOR VIOLATION

• The only flavor changing structure is:

$$\lambda_{\rm FC} = \begin{cases} \left( Y_U \; Y_U^{\dagger} \right)_{ij} \simeq \lambda_t^2 V_{3i}^* V_{3j} & i \neq j \\ 0 & i = j \end{cases}$$

• Generic flavor changing currents:


## MINIMAL FLAVOR VIOLATION

- If there are more Higgs doublets:
  - λ<sub>b</sub> can be large
  - there is a new source of SU(3) breaking

$$\lambda_{\rm FC}^d = \left(Y_D \ Y_D^\dagger\right)_{ij} \simeq \frac{2m_b^2}{v^2} \tan^2 \beta \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}$$

In principle we have non-holomorphic Higgs interactions

$$\epsilon_0 \ \bar{Q}_L \lambda_d D_R H_U^c \implies \delta m_b = m_b \ \epsilon_0 \tan \beta$$

(G-2)<sub>µ</sub>

Dominated by the chargino-sneutrino diagram:

$$\delta a_{\mu^+}^{\chi\tilde{
u}} \simeq rac{g_2^2}{32\pi^2} rac{m_{\mu}^2}{m_{\tilde{
u}}^2} rac{\mathrm{Re}(\mu M_2) \tan eta}{m_{\tilde{
u}}^2}$$

the sign of the SUSY contribution is  $sign(\mu)$ 

- Theoretical predictions are complicated by non-perturbative effects:
   ✓ light-by-light scattering
  - ✓ hadronic contribution can be extracted from  $e^+e^-$  and  $\tau$  data (the latter up to isospin corrections)



• Experimental and theoretical results read:  $a_{\mu}^{exp} = 11659208(6) \times 10^{-10}$ 

$$a_{\mu}^{\rm SM}(ee) = 11659178(6) \times 10^{-10}$$

 $a_{\mu}^{\rm SM}(\tau) = 11659179(7) \times 10^{-10}$ 

 $\Rightarrow \delta a_{\mu} = (29.3 \pm 8.2) 10^{-10}$ 

### $B \rightarrow \tau \nu$

#### • The experimental measurement is:

$$BR(B \to \tau\nu) = \begin{cases} (1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})) \times 10^{-4} & Belle\\ (1.2 \pm 0.4(\text{stat}) \pm 0.3(\text{bckg}) \pm 0.2(\text{syst})) \times 10^{-4} & BaBar \\ BR(B \to \tau\nu)^{WA} = (1.42 \pm 0.43) \times 10^{-4} \end{cases}$$

• The SM expectation is (tree-level W exchange):

$$\mathsf{SR}(B \to \tau \nu_{\tau}) = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

The supersymmetric corrections interfere destructively with the SM amplitude and are given by

$$\frac{\mathsf{BR}(B \to \tau \nu_{\tau})^{\mathsf{SUSY}}}{\mathsf{BR}(B \to \tau \nu_{\tau})^{\mathsf{SM}}} = \left(1 - \frac{m_B^2}{m_{H^{\pm}}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right)^2$$

#### $B \rightarrow \tau \nu$

• f<sub>B</sub> and V<sub>ub</sub> are the dominant source of error:

 $f_B = (0.216 \pm 0.022) \text{ GeV}$  $|V_{ub}| = (4.09 \pm 0.26) \times 10^{-3}$  [HFAG]

• The ratio experiment/SM is, therefore:

 $R(B \to \tau \nu) = 1.02 \pm 0.40$ 

 $B \rightarrow X_{S} \gamma$ 

#### The dipole operators are:

 $H_{\text{Dipole}}^{b \to s\gamma} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[ C_7(\mu) \cdot \frac{em_b}{16\pi^2} \bar{s}_{\text{L}} \sigma_{\mu\nu} b_{\text{R}} F^{\mu\nu} + C_8(\mu) \cdot \frac{g_s m_b}{16\pi^2} \bar{s}_{\text{L}\alpha} T^a_{\alpha\beta} \sigma_{\mu\nu} b_{\text{R}\beta} G^{a\mu\nu} \right]$ 

- W<sup>+</sup> and H<sup>+</sup> contributions have the same sign (both negative)
- The sign of the chargino contribution is -sign(A<sub>t</sub>μ). At the EW scale we have A<sub>t</sub> ~ -2 M<sub>1/2</sub>, hence we have destructive and constructive interference for μ > 0 and μ < 0, respectively.</li>
- World average:  $\mathcal{B}(B \to X_s \gamma)_{exp} = (3.55 \pm 0.26) \times 10^{-4}$
- SM prediction:  $\mathcal{B}(B \to X_s \gamma)_{SM} = (2.98 \pm 0.26) \times 10^{-4}$

 $B \rightarrow X_S \gamma$ 

#### • The SM prediction includes NNLO effects

The charm mass dependence is calculated in the  $m_c >> m_b/2$  limit and an extrapolation is used. The exact calculation of the 3-loop matrix element of O<sub>2</sub> using Mellin-Barnes techniques is being pursued [Boughezal, Czakon, Schutzmeier]

- Becher & Neubert showed that the standard OPE is valid only for cuts on the photon energy of about 1 *GeV*.
- In order to get a reliable prediction for a more realistic cut of 1.6 GeV, effective theory techniques (SCET RGE) have to be used:  $BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}} = 3.15 \times 10^{-4}$  [normal OPE]

 $BR(B \rightarrow X_s \gamma)_{E_{\gamma} > 1.6 \text{GeV}} = 2.98 \times 10^{-4}$ 

[SCET approach]

 $B \rightarrow X_S \gamma$ 



$$B \rightarrow X_S \gamma$$

For simplicity, let us set  $C_i(\mu_b) \to 0$  for  $i \neq 7$ . Then, in the "fixed order":

$$\mathcal{B}(E_{\gamma} > E_{0})/\mathcal{B}_{\text{total}} = 1 + \frac{\alpha_{s}(\mu_{b})}{\pi} \phi^{(1)}(E_{0}) + \left(\frac{\alpha_{s}(\mu_{b})}{\pi}\right)^{2} \phi^{(2)}(E_{0}) + \dots$$
$$\phi^{(1)}(E_{0}) = \phi^{(1)}_{a}(E_{0}) + \phi^{(1)}_{b}(E_{0})$$



Terms up to  $\mathcal{O}(x^3)$  must cancel out.

 $B \rightarrow X_S \gamma$ 



However, only "const +  $\log(\delta)$ " have been included at orders  $\mathcal{O}(\alpha_s^3)$  and higher in hep-ph/0610067.

# OTHER OBSERVABLES

- $B_s$  mass difference ( $\Delta M_{Bs}$ )
  - Proportional to  $(\tan \beta)^4$
  - Cancellation m<sub>H</sub> m<sub>A</sub> implies m<sub>s</sub>/m<sub>b</sub> suppression
- Dark matter relic density (Ωh<sup>2</sup>)
  - Experimental errors are tiny (4%)
  - Theory uncertainties are much larger
    - parametric errors (e.g. M<sub>t</sub>) and uncertainties in the RGE running from the GUT to the EW scales (especially in the large tanβ region) impact strongly the calculation of Ωh<sup>2</sup>
    - ✓ points for which Ωh<sup>2</sup> is too small can be recovered by some other dark matter candidate

• We impose only a loose upper bound:  $\Omega h^2 < 0.13$  (99% C.L.)

## LIGHT HIGGS PARAMETER SPACE

$$m_A^2 = M_{H_d}^2(m_t) - M_{H_u}^2(m_t) - m_Z^2$$

• The running of  $M_{Hu}$  is driven by the large Yukawa of the top. Hence we always have  $m_{H_u}^2(m_t) < 0$ .

$$m_{H_u}^2(m_t) \simeq -0.12M_0^2 - 2.7M_{1/2}^2 + 0.4A_0M_{1/2} - 0.1A_0^2$$

- The running of  $M_{Hd}$  depends strongly on tan $\beta$ 
  - For moderate  $\tan\beta \ (< 10): \ m_{H_d}^2(m_t) > 0$
  - For large tanβ, the bottom Yukawa plays a more important role until the limiting case  $m_{H_d}^2(m_t) \simeq m_{H_u}^2(m_t) < 0$

Low  $m_A$  can only be achieved at large tan $\beta$ 

# LIGHT HIGGS PARAMETER SPACE

- The LSP condition  $m_{\tilde{\tau}} > m_{\tilde{\chi}^0}$  implies a lower bound on  $M_0$
- The absence of charge and color breaking minima implies  $|A_0| < 3 M_0$
- Both  $B \rightarrow X_s \gamma$  and  $B_s \rightarrow \mu \mu$ , require a small  $A_t$ 
  - An approximate formula is:  $A_t = 0.25 A_0 2 M_{1/2}$
  - We need large A<sub>0</sub> and small M<sub>1/2</sub>
  - Under these conditions the chargino contribution to  $\varepsilon_Y$  decreases and the gluino one is increased (i.e. more efficient cancellation)
  - We need large tan $\beta$ , large  $A_0$ , large  $M_0$  and small  $M_{1/2}$

## GAUGE MEDIATION

#### • The soft breaking terms are:

- $M_i = N\Lambda \,\tilde{\alpha}_i \, g(x) \equiv \hat{M}_i g(x)$
- $M_{A}^{2} = 2N\Lambda^{2} \left[ C_{3}\tilde{\alpha}_{3} + C_{2}\tilde{\alpha}_{2} + 3/5 Y^{2}\tilde{\alpha}_{1} \right] f(x)$
- The Higgs mass squared are controlled by RGE effects and are essentially proportional to M<sub>3</sub>; hence:

$$M_A^2 \simeq M_{H_d}^2 - M_{H_u}^2 \simeq (C_d - C_u) M_3^2$$

• The lower limit on the stau mass, sets a lower limit on M<sub>1</sub> and hence a stronger lower limit on M<sub>3</sub>:

 $m_{\tilde{\tau}_1}^2 \sim m_{\tilde{\tau}_R}^2 \sim 6/5M_1^2 > (100 \text{ GeV})^2 \Longrightarrow M_3 > 1350 \text{ GeV}$ 

 $M_A < 200$  GeV implies, therefore, the strong fine-tuning  $C_d$ - $C_u \sim 10^{-2}$ 

### ANOMALY MEDIATION

• The soft breaking terms are:

 $M_{i} = \frac{1}{g_{i}}\beta_{i}m_{3/2}$   $M_{A}^{2} = \frac{1}{2}\dot{\gamma}_{A}m_{3/2}^{2} + m_{0}^{2}Y_{A}$   $A_{A} = \beta_{Y_{A}}m_{3/2}$ 

- The squared scalar masses tend to be tachyonic and Fayet-Iliopoulos D-terms were added (strong model dependence)
- As a consequence it is extremely *easy to obtain a light M*<sub>A</sub>
- A correct EWSB is obtained only for moderate tanβ, therefore the *phenomenology of these models (for light M*<sub>A</sub>*) is less interesting*