

Using Leptons and Bosons to Search for New Physics in Hadron Collisions

Benjamin Brau UCSB

Outline

- Goals of High Energy Physics
- Introduction to the Tevatron and CDF
- Leptons as Probes
- Search for New Heavy Particles in ZZ → eeee (submitted to PRD, arXiv: 0801.1129 [hep-ex])
 - Electron Identification Optimization
 - Z and ZZ Candidate Reconstruction
 - Background Estimation
 - Revealing the Search Region
- Muon Optimization
- Other Searches
- Summary

• Answer fundamental questions about the universe:

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?
 - What is dark matter?

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?
 - What is dark matter?
 - Why do we live in a matter-dominated universe?

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?
 - What is dark matter?
 - Why do we live in a matter-dominated universe?
- How do we answer these questions?

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?
 - What is dark matter?
 - Why do we live in a matter-dominated universe?
- How do we answer these questions?
 - Find (and study) the particles and interactions responsible

- Answer fundamental questions about the universe:
 - What is the origin of electroweak symmetry breaking?
 - Are there hidden dimensions?
 - What is dark matter?
 - Why do we live in a matter-dominated universe?
- How do we answer these questions?
 - Find (and study) the particles and interactions responsible
 - Hadron Colliders (Electron Colliders)

The Tevatron at Fermilab

- Highest E operating pp collider in the world (2 TeV)
- Largest Dataset
 Ever
 - Many times data of top discovery

Tevatron Performance

- Record Luminosity: 292.3×10³⁰ cm⁻²s⁻¹
- To Tape Efficiency: 81.6%
- Performance Continues to Improve

pp Collisions

- Probe higher energy per \$ than e⁺e⁻
- Only a (random) fraction of proton's energy is involved
 - CM is not known
 - Simultaneous probe of many energies
- Contribution from gluon interactions can be significant

What is produced in a pp collision?

- Light Quark Jets
- b-Quark Jets
- Gauge Bosons W,Z
- Top quark pairs
- Single top quark
- Di-Boson WW, WZ, ZZ
- Boson + Higgs ZH,WH
- Higgs
- SUSY, Technicolor, Leptoquarks, Z',W', excited quarks & leptons...

Leptons as Probes of New Physics

- Many new physics scenarios involve weak interactions → leptons!
- New particles themselves also can couple to leptons (G, W',Z')

Extra Dimensions

- Provide a solution to the hierarchy problem
- Arkani-Hamed, Dimopoulos, Dvali (ADD)
 - n compact extra dimensions; MPI2~RnMD2+n
 - Standard model confined to a 4-dimensional brane
 - Only gravity lives in full 4+n dimensional bulk

- Randall-Sundrum I (RS)
 - Warped extra dimension(s), exponential warp factor solves hierarchy problem
 - Two branes, TeV and Planck. Gravitons live everywhere, SM localized at TeV brane.
 - Signature: High-Mass Graviton Resonances
 - pp \rightarrow G_n, m_n ~ x_n k/M_{Pl}
 - Decays to qq, II, γγ, WW, ZZ

 Weakness of gravity due to being diluted by volume of extra dimensions

Search for New Massive Particle X→ZZ→eeee

- Signature-Based Search for heavy particle $X \rightarrow ZZ \rightarrow eeee$
 - Sensitive to production of any massive particle decaying to ZZ
 - First search for this at Tevatron!
- For a Randall-Sundrum graviton model (RS1):
 - Predicts graviton masses at ~TeV scale
 - $\sigma(pp \rightarrow G \rightarrow ZZ) \sim 290$ fb for $m_G = 500$ GeV, k/M_{Pl} = 0.1
- Backgrounds
 - Standard model ZZ production
 - Mis-identified e's can be understood data sidebands
- Expect 0.33 events /fb⁻¹ per G \rightarrow ZZ \rightarrow IIII (m_G = 500 GeV, k/M_{Pl} = 0.1)
 - ➡Total 11 events produced in 8 fb⁻¹ in all lepton modes

Analysis Steps

- Know the detector
- Study simulated signal
- Trigger on electrons
- Study data
- Efficiently identify energetic electrons in collision events
- Form Z candidates from pairs of e's
- In events with two or more Z candidates, find best pairings to form two Z's
- Estimate backgrounds
- Look in signal region
- Discovery / Limits

Collider Detector at Fermilab (CDF)

- Silicon Vertexer / Tracker
- Central Outer Tracker (COT)
- Electromagnetic Calorimeter
- Hadronic Calorimeter
- Muon Detectors

Signal Characteristics

- Signature: Two high-p_T Z bosons
 - Four electrons (can be at both very high p_T and very low p_T): must be very efficient to find all four
- Three invariant masses (two mee, one meeee) provide powerful handles to reject backgrounds

Electron momentum: high p_T Zs have both high and low E_T e's

Baseline Electron Identification at CDF

Baseline High-Pt Electron Selection Criteria and Efficiencies: Gen5 and Gen6

Efficiencies and Scale Factors: Blessing Talk and CDF note 7950 measured by Teresa Spreitzer and Corrinne Mills

All users should get electron variables from the StdCEM and StdPEM classes in ElectronUser

- Gen5 refers to the data taken up to September 2004 (run < 190000) and processed with 5.3.1
- Gen6 refers to the data taken betwee December 2004 and September 2005 (190000 < run < 203800) and processed with 6.1.0
- MC is 5.3.3 with the extended run range up to 203799 and no extra interactions.

1. Central Electrons

- StdCEM Definitions
 - E = two-tower EM energy with CEMCOR corrections
 - Et = E * sin(theta track)
 - P and Pt have curvature corrections for data
 - Isolation has leakage corrections
 - CES clusters are track-based
 - CES chi-2 has been scaled with E
 - Central Tight Electrons

Cuts

- Region = 0 (CEM)
- Fiducial = CES fiducial equal to 1
- Et >= 20 GeV
- [Track Z0] =< 60 cm
- Track Pt >= 10 GeV/c
- COT
 - 3 Axial SLs with 5 hits / SL
 - 2 Stereo SLs with 5 hits / SL
- Conversion not equal to 1
- Iso(R=0.4)/Et =< 0.1
- E_Had / E_EM (3 tower) =< 0.055 + (0.00045 * E)
- Lshr (3 tower, track) =< 0.2
- E/p =< 2 unless track Pt >= 50 GeV/c
- [CES delta-Z] < 3 cm
- Signed CES delta-X: -3.0 =< Q * delta-X =< 1.5 cm
- CES Strip chi-2 =< 10
- Efficiencies and Scale Factor combining all the data (> 700 /pb)
 - Data Efficiency = 0.799 +- 0.002
 - MC Efficiency = 0.814 +- 0.001
 - Scale Factor = 0.981 +- 0.003 (stat.) +- 0.004 (syst.)
- Efficiencies and Scale Factor without Isolation cut combining all the data (> 700 /pb)
 - Data Efficiency = 0.823 +- 0.002
 - MC Efficiency = 0.831 +- 0.001
 - Scale Factor = 0.990 +- 0.003(stat) +- 0.003(syst)
- Central Loose Electrons
 - Central Tight Electrons without E/p, Signed CES delta-X, and CES Strip chi-2 cuts (red colors in Tight selections above)
 - Efficiencies and Scale Factor combining all the data (> 700 /pb)
 - Data Efficiency = 0.923 +- 0.001
 - MC Efficiency = 0.926 +- 0.001
 - Scale Factor = 0.996 +- 0.002(stat) +- 0.004(syst)

2. Plug Electrons

StdPEM Definitions

- PEM2x2 Energy with PEMCOR corrections
- Add Leaker Correction
- Plug Tight Electrons
 - Et >= 20 GeV
 - PES 2D Eta: 1.2 =< |eta| =< 2.8
 - E_Had / E_EM =< 0.05
 - PEM 3x3 chi2 =< 10
 - PES 5x9 U => 0.65
 - PES 5x9 V => 0.65
 - Iso(R=0.4) / Et &<= 0.1
 - Delta R (between PES centroid and PEM centroid) =< 3.0 cm
 - Efficiencies and Scale Factor combining all the data (> 700 /pb):
 - Data Efficiency = 0.837 +- 0.003
 - MC Efficiency = 0.897 +- 0.001
 - Scale Factor = 0.933 +- 0.005(stat) +- 0.012(syst)
- Plug Tight Phoenix Electrons
 - Plug Tight Electron Cuts (see above)
 - PhxMatch = TRUE
 - Number of Silicon Hits >= 3
 - [Z(Phoenix)] =< 60 cm
 - Efficiencies and Scale Factor combining all the data (> 700 /pb):
 - Data Efficiency = 0.658 +- 0.004
 - MC Efficiency = 0.691 +- 0.001
 - Scale Factor = 0.952 +- 0.006(stat) +- 0.012(syst)
 - note that the efficiency depends strongly on eta but the scale factor is rather independent of eta
- Plug Tight Phoenix Electrons with |eta| < 2.0
 - Plug Tight Phoenix Cuts (see above)
 - PES 2D Eta: |eta| =< 2.0
 - Efficiencies and Scale Factor combining all the data (> 700 /pb):
 - Data Efficiency = 0.730 +- 0.004
 - MC Efficiency = 0.775 +- 0.001
 - Scale Factor = 0.942 +- 0.005(stat) +- 0.012(syst)
- Very Low Backgrounds.
- Good for W, Z, ttbar
- Inefficient for multilepton events 15

Electron ID Efficiency and Acceptance

- Four Electrons:
 - Yield looses like $(A \times \epsilon)^4$
- Ten identification criteria, each 97% efficient:
 - Single electron: 73%
 - Four electrons: 30%
- Acceptance has similar effect
 - Calorimeter Coverage: missing ~18% of solid angle from gaps in Central Calorimeter
- ZZ Signal MC: 15% total

Electron Identification at CDF

CDF's Calorimeters

- Electrons and photons interact mainly with EM field of nucleus
 - Bremsstrahlung, Compton scattering, pair-production, photoelectric effect
 - Relevant scale is radiation length, X₀
- Hadrons interact mainly with nuclei
 - Relevant scale is nuclear interaction length, λ
- Electromagnetic Calorimeter ~fully contains EM shower
- Hadronic Calorimeter measures penetrating hadronic shower

Calorimeter EM (Pb/Scintillator) HAD (Fe/Scintillator)

EM Depth	HAD Depth	X_0/λ
$18 X_0$	0.6λ	30.5
$46.4 X_0$	5.2λ	8.9

CDF Central Calorimeter

- Wedge geometry
 - Has gaps between wedges
- Each of four arches on rollers

Central Calorimeter Coverage

- Electrons are required to be Fiducial
 - Ensures E well-measured
- Gaps in coverage:
 - Chimney

- 18cm between arches at z=0
- Each wedge loses 2/15 in ϕ
- Total: 18% of acceptance for |η|
 < 1 missing

Displaced Calorimeter Arches

21

 Found two of the central calorimeter arches weren't quite put back after a shutdown

Optimized Electron Selection

- One Central "Seed" Electron (satisfying trigger requirements):
 - High-momentum track pointing at calorimeter
 - Fiducial (energy well-measured)
 - Isolated from other energy deposits
 - E_T > 20 GeV
 - E_{HAD}/E_{EM} consistent with an Electromagnetic Shower
 - Shower profile consistent with a Electromagnetic Shower

- Central and Forward Optimized electrons:
 - Medium-momentum track pointing at Central calorimeter
 - Fiducial (energy well-measured)
 - Isolated from other energy deposits
 - E_T > 5
 - E_{HAD}/E_{EM} consistent with an Electromagnetic Shower
 - Pseudorapidity < 2.5
- Isolated track electrons:
 - Well-measured high-momentum isolated track pointing at gaps in calorimeter coverage

Z→ee Yields

Figure 1: Distribution of m_{ee} for Z^0 candidates formed from a "seed" electron candidate together with a second electron candidate in data (a), and the subset of Z^0 candidates formed from a "seed" electron candidate and an isolated track (b).

- Approximately 100,000 Z candidates in 1.1 fb⁻¹
- Approximately 10,000 Z candidates from CEM + isolated track

$X \rightarrow ZZ \rightarrow eeee Signal Reconstruction: m_{eeee}, \chi^2$

- Look for events with \geq 4 electrons
- For each ZZ combination, compute

$$\chi^2 = \sum \left(\frac{m_{ee} - m_{Z^0}}{\sigma}\right)^2$$

- σ ~2.5-4.5 GeV, depends on electron types, $$E_{T}$$
- Keep one combination with smallest χ^2 value
- Require $\chi^2 < 50$ ($\epsilon \sim 93\%$ in signal MC).
- Hidden signal region:

 $m_{eeee} > 500 \text{ GeV}, \, \chi^2 < 50$

RS1 Signal MC

Figure 2: Distribution of χ^2 for simulated Randall-Sundrum signal scenario ($m_G = 500 \text{ GeV}/c^2$) (top). Four-electron invariant mass distribution for events satisfying $\chi^2 < 50$ (gray) and for events which fail this requirement (black) (bottom).

- Requiring $\chi^2 < 50$ is efficient for ZZ signal
- Acceptance times efficiency ~50-60%, depending on mass

Graviton Yield in Simulated Events

 Optimized selection has approximately four times acceptance times efficiency than standard selection for this four-electron signature

G→ZZ→eeee Backgrounds

- Tiny, but must quantify to establish significance of signal or set limits
- Four real electrons
 - Standard model ZZ production
 - Pythia MC prediction: 0.008 ± 0.006 events in search window ($\chi^2 < 50$, $m_{eeee} > 500$ GeV)
- Events where one or more hadrons (from jets) is misidentified as an electron
 - Z + jets, W + jets
 - QCD multijet
 - Estimate with data

Standard model ZZ background

- Standard model ZZ production has four electrons
- Is non-resonant

- Use Pythia MC:
 - Expect 0.008 standard model ZZ events total for m_{eeee} > 500 GeV in 1.1/fb

Misidentified Electrons: Control Samples

- Use control samples in data to estimate shape and normalization of backgrounds from hadrons misidentified electrons and conversions
- Select 'hadron' candidates by inverting & dropping electron selection criteria
- Form 'fake' ZZ combinations by using one or more hadron candidates with electron candidates in the event
- Invariant mass of of one seed and one hadron shows no Z peak: few real electrons in the hadron control sample.
- Fit fake ZZ combinations (eeeh, eehh, ehhh, hhhh) invariant mass to extract shape.

Fit to Obtain Background Shape

- Fit to obtain empirical description of background at high meeee
- Shape is independent of number of hadrons used in combination.
- Normalization fixed by low-mass four-electron sample

Estimate

 0.020±0.009±0.007
 events in search
 region above 500 GeV

 $f(\chi^2, m_{eeee})$

$$= Cm_{eeee}^{\gamma}e^{\chi^{2}\tau}$$

Data in the Search Region

Set limits

Event Displays

- Two Central e's
- Two Forward e's
 - Have calorimeterseeded silicon tracks (Phoenix)
- Charge assignment for best pairing is consistent
- Lots of low-p_T activity
- July 6, 2002

Event: 1167222 Run: 147806 EventType: DATA | Unpresc: 0,32,33,34,3,35,36,8,41,10,11,12,44,13,15,16,17,19,20,21,23,29 Presc:

Towers> 1 GeV E_T

Limits on $\sigma \times BF(G \rightarrow ZZ)$

- Limits set in context of RS1 Graviton scenario
- Bayesian binned maximum likelihood method in 100 GeV wide windows
- Systematics included in limit calculation:
 - Luminosity (5.9%)
 - PDF Uncertainties (0.4%)
 - MC Statistics (1.3%)
 - ISR (1.0%)
 - Electron ID (1.0% per electron)
- Limits 4-6 pb, depending on mass.

34

Observation of WZ produciton at CDF

- Other analyses at CDF have employed these techniques to increase lepton acceptance
- Standard model WZ production was observed with 1.1 fb⁻¹ with electrons and muons
- Literary member of WZ publicatioin review committee
- Phys. Rev. Lett. 98, 161801 (2007)

What about Muons?

- Expect 0.33 events /fb⁻¹ per G→ZZ→IIII $(m_G = 500 \text{ GeV}, \text{ k/M}_{Pl} = 0.1)$
- Add muons: factor of 4 in acceptance (eeee, ee $\mu\mu$, $\mu\mu$ ee, $\mu\mu\mu\mu$)
 - Not quite:
 - Baseline muon selection has worse acceptance than Baseline electron selection: Increase Muon Coverage

Adding Muons

- Momentum measured with track
 - Identified as a muon in muon detectors (stub) or calorimeter (MIP)
 - Resolution becomes important

$$\frac{\sigma_E}{E} = \frac{13.5\%}{\sqrt{E}} \quad \frac{\sigma_{p_T}}{p_T} = 0.05\% p_T \qquad \begin{array}{cccc} \text{Lepton} & 50 \text{ GeV} & 250 \text{ GeV} \\ e & 2\% & 0.9\% \\ \mu & 2.5\% & 12.5\% \end{array}$$

- Tracking at CDF is efficient and pure for $|\eta|<1$
- Forward tracking $|\eta| > 1$ is difficult
- I have worked with a student on a new algorithm to increase pure and efficient tracking coverage to $|\eta|$ ~2

CDF Tracking Algorithms

- Outside-In
 - Efficient when track propagates through entire COT
 - Add Silicon
- Silicon Stand-alone
 - Can find forward tracks ¹
 - Lower purity, efficiency
 - Inside-out
- Calorimeter-seeded (electrons only)

Segment Seeded Tracking

 Can we start with hits in the COT instead of electron measured in calorimeter?

New Segment-seeded Tracking

- Segment and primary vertex used to form road to search in silicon for hits
- Efficient to $|\eta| \sim 2$
- Implemented in final version of CDF offline software
 - Major rewrite of other algorithms
 - Many other improvements

Drift Chambers

- Measure momenta of charged particles by measuring trajectories in uniform magnetic field
- Principle: position measurements of ionization in gas
 - Sense wire at large potential (~radial E field)
 - Electrons drift ~1 cm at a constant velocity
 - Typical drift velocity: 50 µm/ns
 - Know v: drift time measurement is a position measurement
 - Many measurements provide trajectory

Drift Chamber Timing Corrections

- Segment-Seeded tracking requires accurate position measurements: accurate timing measurements
- Forward segments have different time corrections
- Segments need corrections to provide a useful seed for adding silicon hits

42

New Segment-seeded Tracking

- Start with unused hits in COT
- Correct timing
- Form segment
- Fit for a search trajectory

- Search for hits in silicon
- Refit track
- Implement to extend muon coverage to |η| ~2 in analysis

CDF Exotics Group

- CDF "Very Exotic Physics" Subgroup Convener June 2006 July 2007
- CDF "Exotics" Group Convener July 2007 December 2008
- Sent Six New Results (since Winter Conferences) to Lepton Photon 2007

Analysis	Luminosity	More Information
Search for Anomalous Production of y y T	2 fb ⁻¹	<u>WebPage</u>
Search for Direct Production of Squarks and Gluinos	1.4 fb ⁻¹	<u>WebPage</u>
Search for Heavy Quarks in Dileptons+X	1.2 fb ⁻¹	<u>WebPage</u>
Global Search for New Physics at High-p _T	1 fb ⁻¹	WebPage Note
Search for Large Extra Dimensions using MET+1 Jet Events	1 fb ⁻¹	<u>WebPage</u>
Search for high mass resonance decaying to e ⁺ e ⁻	1 fb ⁻¹	<u>WebPage</u>

CDF Exotics Group

- 12 Analysis + 1 Detector Abstracts Submitted to APS
 - SUSY Trilepton result 2/fb (First mSUGRA Limit!)
 - Exclusive gamma+MET 2/fb
- 20 Analyses in the pipeline
 - Anticipate ~10 new results for Winter Conferences
- Now is a great time to be searching at CDF

Outlook

- Significantly improved lepton acceptance
 - Cross sections for NP scenarios is small
 - Search for $X \rightarrow ZZ \rightarrow$ eeee: Efficiency to fourth power
 - Improved A* ϵ from 15% to ~60%
 - Robust data-based method for background estimation
 - Submitted to PRD: arXiv:0801.1129 [hep-ex]
 - Methods are being adopted by other analyses
- Exotics Convener
 - Now is a great time to be searching at CDF
 - Squeeze results out of Tevatron with large datasets

Outlook

- LHC will be a different game
 - Quickly understand the detector and data
 - Misalignments, 'features' in the data and code, etc.
 - Robust methods
 - Look broadly
 - Model-independent
 - Leptons and bosons which we can understand quickly

BACKUP SLIDES

Other Projects and Activities

- L00 d0 Resolution studies
- Silicon Pager Carrier
- Silicon monitoring WG leader
 - Program of silicon longevitiy studies
 - Monitoring tools (offline efficiencies)
- Silicon resolution function measured in data
- L00 efficiency improvements
- L00/ISL Cooling impact
 - tracking
 - b-tagging
- VEP Convener
- CDF Exotics Convener

CDF

CDF

Pseudorapidity

- $|\eta| < 1.0$ is "Central", $|\eta| > 1.0$ is "Forward"
- New physics often is enhanced in the central region

Optimized Electron Selection

- Much looser selection; more background. Will reject later with ZZ→eeee event kinematics
- Simplify! Not required: Δz_{CES}, Δx_{CES}, q, E/p, CES strip χ2, PES5x9U/V, ΔR, PEM 3x3 χ2...
- One Central "Seed" Electron (satisfying trigger requirements):
 - Fiducial, E_T > 20 GeV, E_{HAD}/E_{EM} < 0.055 + 0.00045*E, p_T > 10 GeV, |track z₀|
 < 60, LshrTrk < 0.4, Isolation < 0.2
- Central electrons:
 - Fiducial, E_T > 5, |track z₀| < 60, E_{HAD}/E_{EM} < 0.055 + 0.00045*E/GeV, Isolation < 0.2
- Plug electrons:
 - $E_T > 5$, $E_{HAD}/E_{EM} < 0.05$, Isol < 0.2, $1.1 < |\eta_{DET}| < 2.5$
- Isolated track electrons:
 - Pointing at calorimeter gaps, $|z_0| < 60$, 3 Axial, 2 Stereo, $p_T > 10$ GeV

Acceptance

Silicon Wirebond Failures

- Wirebonds connect φ and z sides of hybrid
- Observed loss of power to z side during periods of synchronous readout
- Lorentz forces perpindicular to wires
- 2mm wirebond natural ω ~15 kHz

- In CDF, B=1.4T, current in bond ~200mA: forces on bonds ~5E-4N
- Reproduced wirebond failure on bench
- Synchronous readout now halts DAQ

