The Quest for the Higgs

Sabine Lammers Columbia University

Outline

- Introduction to SM Higgs Physics
- Experimental Apparatus
- Higgs Searches at the Tevatron
- WH and Combination
- Higgs Searches at the LHC
- Vector Boson Fusion (VBF) Higgs
- VBF at the Tevatron

Higgs Phenomenology

- Higgs field is a complex scalar field introduced to break the electroweak symmetry and to introduce mass terms in the Standard Model (SM) Lagrangian
- Neutral, spin 0 Higgs Boson must be found to complete SM picture
- Higgs mass is a parameter of the theory

Indirect Constraints on Higgs mass

- Precision Fit of electroweak precision data, including top quark and W masses
- best fit Higgs mass = 76 + 33 24 GeV

➡ light Higgs is preferred

LEP Direct Searches

- LEP direct search result : combination from four experiments found hint of a signal at m_H ~118 GeV, but could be fluctuation
- LEP technique for deriving limits
 - Ratio of Poisson Likelihoods
 - Comparison of signal+background and background only hypotheses to data
 - Probability densities determined using toy MC experiments whose event makeup vary according to statistical and systematic uncertainties

Experiments

Tevatron and LHC

- Tevatron energy frontier accelerator for nearly 2 decades
 - $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$

• LHC - will probe Terascale phenomena as energy frontier machine for the next decades

• pp collisions at $\sqrt{s} = 14$ TeV

Sabine Lammers

Tevatron Detectors: DØ and CDF

- DØ Liquid Argon and Uranium Scintillator sampling calorimeter
- Silicon Microstrip and Fiber tracking
- Good muon coverage $|\eta| < 2$
- 2T magnetic field

• CDF - Lead Scintillator sampling calorimeter

- Large tracking volume + silicon
- Muon coverage $|\eta| < 1.5$
- 1.5 T magnetic field

 $\mathbf{n} = -\ln(\tan \Theta/2)$

LHC Detectors: CMS and ATLAS

CMS

- Lead Tungstate crystal EM calorimeter
 - full silicon tracking

ATLAS

- liquid Argon calorimeter
- muon coverage to $|\eta| < 2.5$

Sabine Lammers

Tevatron Performance

DZero RunIIB upgrades: L1Cal/ L1CalTrack trigger and new silicon layer added to inner tracking detector

Trigger upgrades ensure high trigger efficiency at high instantaneous lumi Silicon upgrade provides better b-tagging

Sabine Lammers

Quest for the Higgs

L1Cal2b Upgrade

- Upgraded trigger electronics provide better digitization and allows for sophisticated hardware (sliding window) algorithms including clustering at Level 1.
- New features include triggers for jets, taus, isolated electrons, missing E_T, and topological triggers, e.g. acoplanar jets or back-to-back electrons

Improved L1Cal2b algorithms allows us to run at higher instantaneous luminosity with no degradation (enhancement in some cases) in trigger efficiency

Nucl. Instrum. and Methods, A 584/1, 75-97 (2007)

Higgs Searches at the Tevatron

Higgs Production

Higgs Decay

- Higgs decays to pairs of fermions or bosons
- Couplings to fermions are proportional to the masses
- Selection depends on available phase space to produce real particles
- Dominant decay
 - b-quark pairs when $m_H < 135 \text{ GeV}$
 - W pairs when $m_H > 135 \text{ GeV}$

WH Channel

$$WH \rightarrow lv b\overline{b}, \ l = e, \mu$$

Analysis Ingredients

- Selection of phase space
 - want high acceptance, reconstruction and trigger efficiency for Higgs events
- Reconstruction of final state particles
- Simulation of background processes
- Normalizing the backgrounds and K-factors
 - good modeling of the data needed for further analysis
- Analyzing the data with multivariate techniques
- In the absence of signal, extracting limits

Phase Space and Reconstruction

• Event Selection:

- electron, muon $p_T > 15 \text{ GeV}$
- electron, muon $|\eta| < 1.1, 2$ $\eta = -\ln(\tan \Theta/2)$
- missing $E_T > 20$ GeV
- scalar sum of jet energies > 60 GeV
- 2 jets with p_t> 20 GeV, $|\eta|<2.5$
- 1 jet with $p_T\!\!>\!25$ GeV, $|\eta|<\!2.5$
- single or double b-tagging

Electron Reconstruction

- EM fraction > 0.9
- shower shape requirement
- cone isolation requirements
- EM deposit matched to 5 GeV track
- likelihood requirement
- Muon Reconstruction
 - hits in all layers of muon system
 - scintillator hits
 - track matching between central tracking and muon systems
 - isolation requirements
- B Jet Tagging
 - NN algorithm based on 7 lifetime observables

 $WH \rightarrow l\nu bb, \ l = e, \mu$

Backgrounds

- W+jets any process that produces a W and light flavor jets
 - dominant background before requiring b-tagging
- Wbb, Wcc production of W and the heavier charm and bottom jets
 - dominant background after b-tagging
- tt direct production of top pairs which decay to Wb
 - dominant background at high dijet mass
- QCD pure jet events in which one jet mimics lepton signature
- additional contributions from single top, diboson and others

QCD instrumental backgrounds

- Jets mimic signature of electrons or muons
 - electrons: jet has high electromagnetic fraction
 - muon: semi-leptonic quark decay is mis-identified as being isolation
- Fake jet contribution can be reduced by requiring "lepton" to be well separated from other jets in the event $\Delta R_{lepton-jet} > 0.5$
- Independent analysis performed on QCD-enriched data sample to determine probability that jets pass lepton identification criteria.
- QCD shape estimated separately for each distribution

Results

Event Yields

	W + 2 jets	W + 2 jets	W + 2 jets	W + 3 jets	W + 3 jets	W + 3 jets
		(1 <i>b</i> jet)	(2 <i>b</i> jets)		(1 b jet)	(2 b jets)
WH	9.92 ± 1.44	3.94 ± 0.63	2.32 ± 0.44	2.43 ± 0.42	0.95 ± 0.18	0.59 ± 0.12
WZ	$645~\pm~90$	38 ± 6	7.6 ± 1.34	153 ± 24	10 ± 2	2.4 ± 0.5
$Wb\overline{b}$	$1352~\pm~346$	$441~\pm~117$	91.7 ± 26.0	433 ± 118	$137~\pm~39$	33.9 ± 10.0
$t\overline{t}$	348 ± 83	$139~\pm~34$	53.8 ± 14.3	596 ± 152	$238~\pm~63$	122.4 ± 34.3
Single top	$189~\pm~37$	$78~\pm~16$	19.4 ± 4.4	62 ± 13	25 ± 6	10.1 ± 2.5
QCD Multijet	2908 ± 436	193 ± 36	10.8 ± 3.3	1051 ± 158	87 ± 16	12.2 ± 4.7
W+ jets (light,c)	$28013~\pm~3181$	470 ± 137	$20.9~\pm~6.9$	5332 ± 836	$132~\pm~41$	11.5 ± 4.0
Total expectation	33458 (n.t.d.)	1360 ± 187	204.1 ± 31.0	7627 (n.t.d.)	630 ± 86	192.5 ± 36.3
Observed Events	33458	1403	193	7627	570	173

- Table summarizes the number of expected events for Higgs events and all background processes given all cuts in different jet/btag bins
- W+2jets samples used for analysis, W+3jets samples used for control
- In most sensitive bin, $S/\sqrt{(S+B)} = 2.32 / \sqrt{204.1} = .162$

Multivariate Techniques

- Neural Networks
 - exploits correlations between kinematic properties of event objects
 - "trained" on reconstructed variables in signal and background MC samples to find correlations
 - run on data to identify events with high signal probability
- Matrix Element Discriminant
 - use LO matrix elements to calculate event probabilities
 - for each event and process, integrate ME over phase space including efficiency and resolution functions
- Decision Trees
 - similar to neural networks, classifies events as more signal-like or background like

Different techniques usually give comparable improvement in sensitivity

NN applied to WH

$WH \rightarrow lvb\overline{b}, \ l = e, \mu$

- Neural net discriminant tuned to further enhance signal and background separation
 - Event variables are inputs:
 - NN trained on subset of background samples, but run on all backgrounds
- Systematics
 - luminosity and normalisation
 - QCD background estimation
 - input background cross-sections
 - jet energy scale, dijet mass resolution
 - b-tagging, lepton-id
- Final result determined from fit to NN output

NN output - 2 tags

Quest for the Higgs

Deriving Limits

$WH \rightarrow lvb\overline{b}, \ l = e, \mu$

- Limits derived using semi-frequentist CL_s method where test statistic is LLR = -2LogQ = -2Log[P(s+b)/P(b)]
 - P are probability distribution functions for the signal+background and background only hypotheses
 - P are populated via random Poisson trials with mean values given by the expected number of events in each hypothesis.
 - Systematic uncertainties are incorporated by varying the expected number of events in each hypothesis according to the size and correlations of the uncertainties

Final Result

 $WH \rightarrow lvbb, \ l = e, \mu$

Result: Limit/SM expectation ~10 for $m_H = 115$ GeV

Summary of all Modes

Channel	Lumi /Technique	Final state	#chan.
WH→I∨ bb	1.7 fb ⁻¹ / NN	e/ µ , 1b/2b	2*(2+2)
ZH→ll bb	1.1 fb ⁻¹ / NN	e/ µ , 1b/2b	2+2
ZH→vv bb	0.9 fb ¹ / NN	Z→vv, W→łv (2b)	2
H→WW*	1.7 fb ⁻¹ /NN	ee, e μ , μμ	2*3
WH→WWW*	1 fb ⁻¹ / 2D LHood	ee, e μ , μμ	3

Total of 23 DØ channels combined (tau-channels not included yet)

8

Combinations & Higgs Sensitivity Current state-of-the-art limits on Higgs production for m_H < 200 GeV per experiment **CDF** DØ CDF II Preliminary 95% CL Limit/SM WHIvbb 1.7/fb SM Higgs Combination Limit / σ(pp→WH/ZH/H)×BR(H→bb/W ⁺W) Observed Limit Expected WHIvbb DØ Preliminary, L=0.9-1.7 fb1 ZHvvbb 1/fb Expected Limit Expected ZHvvbb ZHIIbb 1/fb Expected ZHIIbb HWWIIvy 1.9/fb Expected HWWIIvv 0 CDF for 1-1.9/fb Expected CDF ± 1σ Standard Model ± 1.0 190 200 170 180 110 120 60 m_µ (GeV) 180 200120140160Higgs Mass (GeV/c²)

Latest Higgs Results from Tevatron

- Nearly at required sensitivity for m_H = 160 GeV! Look for tantalizing results at upcoming conferences (maybe even Moriond '08).
- D0 and CDF sensitivities are largely similar, differences can appear as each experiment updates their analyses

Observed limit @ m_H=160 GeV - 1.4 times SM expectation

Higgs Searches at the LHC

Higgs Production at the LHC

- All cross sections go up by 1-2 orders of magnitude (backgrounds go up as well)
- Still dominated by gluon fusion
- Relative Vector Boson Fusion rate much higher than at the Tevatron

Higgs Sensitivity at LHC

Vector Boson Fusion at LHC

- W or Z radiated from each of the incoming quarks, produces a central Higgs
- Topological feature of quark jets produced very forward increases sensitivity
- Introduces possibility to veto on jet activity in the central region to reduce backgrounds

Vector Boson Fusion at the Tevatron

VBF at the Tevatron

- Production of W,Z or Higgs by weak boson fusion process (i.e. not gluon induced)
- Testbed for VBF search methodology being employed by LHC searches
- Validation of VBF-produced W, Z standard model cross sections
- Currently studying W production, where dominant process is W-γ fusion.
- Event signature is similar to t-channel single top or WH production, but no b-tagging.

new analysis at Tevatron

Analysis Ingredients

- Phase Space Selection
 - muon $p_T > 15 \text{ GeV}$
 - muon |**η**| < 2
 - missing $E_T > 20 \text{ GeV}$
 - 2 jets with p_T> 20 GeV
- Similar backgrounds to WH

W+jets - dominant Wbb, Wcc tt and single top Z->µµ Diboson QCD

Signal Monte Carlo

- NLO production cross section ~2.4 pb
- VBF can be simulated with Herwig, Sherpa, VBFNLO
- VBFNLO fully flexible MC that generates event files at LO, cross sections at NLO. Has very good control over theoretical uncertainties.

VBF - W production

Neural Network Discriminant

- Shape spectra differences between WBF and other SM processes make VBF ideally suited for multivariate approach
- NN trained on all simulated background samples and VBFNLO signal sample
- Currently being studied/optimized

--- VBF --- SM Backgrounds

Generator issues

VBF very sensitive to correct modeling of jet emission angle Different generators show non-negligible variation in jet η .

arXiv:0706.2569

Sabine Lammers

Ongoing investigations

- Neural network implementation for separating signal and background
- Forward jet description difficult for LO generators
- Several possible effects:
 - Correct inclusion of all diagrams by chosen generator
 - Color connection between forward jets and proton remnant can get hairy
 - Parton showering schemes in different generators
 - Scheme chosen for matching matrix elements and parton showers
- Validation of forward jet tagging and mini-jet veto. VBF Higgs searches at LHC rely heavily on this method.

Lessons to take from Tevatron

- QCD can be very difficult to model accurately
- Multivariate techniques for object ID (like b-tagging) and event selection perform extremely well.
- Choose multivariate techniques that are complementary

Summary and Conclusion

- Higgs Searches at the Tevatron and LHC are among the most exciting and important work being done in the field today.
- Tevatron sensitivity is improving faster than the increase in luminosity due to intensified efforts in improving reconstruction efficiencies, triggering, jet resolutions, b-tagging algorithms, and more.
- LHC is the only place that will unequivocally discover the SM Higgs Boson (if it is there!), but the Tevatron may get a glimpse of it first.
- Tevatron is a good testbed for search techniques employed at LHC.
- Understanding VBF physics at the Tevatron will be useful for LHC Higgs searches.

Backup

Tevatron Projections

- Including data taking efficiency, projected full data set will be
 - 5.5 fb-1 by end of 2009
 - 6.8 fb-1 by end of 2010
- Assumption: projected sensitivity for $m_H = 115$ GeV will be factor x2 higher than current for full dataset
 - Improvement from 2005 -> 2007 was factor 1.7
 - Several possibilities for improvement:
 - Better b-tagging with Layer 0
 - dedicated group studying dijet mass resolution
 - many gains to be made in acceptance
 - implementation of multivariate techniques

B-Tagging

- Several approaches:
 - soft lepton tag
 - IP based tagging
 - secondary vertex reconstruction
- Most D0 analyses now use neural network discrimination for b-quarks
 - large improvement over individual taggers
 - Loose 70% eff, 4.5% mistag
 - Tight 50% eff, 0.3% mistag
 - WH: Tight, Loose operating points

Combine in Neural Network:

- vertex mass
- vertex number of tracks
- vertex decay length significance
- chi2/DOF of vertex
- number of vertices
- two methods of combined track impact parameter significances

Tau identification

Neural-net based ID
3 NN's for three distinct τ types:

•Performance (for $p_T > 15 \text{ GeV}$):

Tau Type	1	2	3			
Reconstruction						
Jets	1.5	10	38			
Taus	9.1	50	20			
NN > 0.9						
Jets	0.04	0.2	0.8			
Taus	5.8	37	13			

 Validated with the Z's (the first Tevatron Run II Z cross section measurement)

LHC Jet Efficiencies

- Studied in MC for LHC VBF Higgs production
- Never studied with real data!

hep-ph/0402254

VBF H->tautau -> emu

 Projected Higgs signal at mH = 160 GeV for tight and loose electron criteria

L1Cal Algorithms

Introduce clustering algorithms at L1: high efficiency, low latency

Jets:

- EM+HAD trigger sums
- 2x2 LM
- 4x4 TT geometry

EM Objects:

- 2x1 EM TT sums
- Isolation regions defined by adjacent towers

EM+H Isolation

ROI / Tau Cluster

Taus:

- narrow jet
- ratio of core 2x2 to 4x4 sum
- EM+HAD energies

L1Cal Algorithms

Topological Terms:

- Back-to-Back EM objects
- Acoplanar Jets
- Jet Free Regions

Also missing E_T , scalar E_T inclusion of ICR in algos

DIEM B2B(3,4)

[ORed w/ CEM(2,4)]

(1 of 32 config's to OR)

(Back-to-Back EM Objects w/ thresh 4)

Up

East

31

30

29

28

8 7

10

12

13

14

15

16

17

18

19

West