THE ENERGY FRONTIER

R. KEHOE (JAN. 25, 2010)

- Can produce highest mass particles:
 - E.g. W, Z, top quark discoveries
 - Smallest distance scales probed

• Requires proton machine

- ppbar (FNAL) 2 TeV with 10-12 fb⁻¹ by 2012
- pp (LHC) 7 TeV with 0.2 fb⁻¹ by 2011
 - 14 TeV with 1 (several?) fb⁻¹ by 2013
- Physics reach depends on energy and luminosity
- Next 3 years should be very competitive between these two programs
 - Some specific topics remain important at Tevatron afterwards
 - e.g. top quark mass
- Signature of proton collisions: jets
 - Accepting this opens up many interesting channels:
 - top, SUSY, Higgs...

Main interests:

-origin of mass -cosmological implications -gravity, dark matter

TOP PHYSICS AT DO

• Production and decay of top quark pairs

- Events with 2, 1 or 0 leptons
 - SMU concentrated on 2 leptons
 - Phys. Rev. D 80:092006 (2009)
 - Phys. Lett. B 655:7 (2007)

• Importance of top mass

- Fundamental (unpredicted) parameter
- Electroweak symmetry breaking
- New strong dynamics?

TOP MASS IN DILEPTON EVENTS

- main elements of analysis
 - kinematic reconstruction
 - Multi-parameter likelihood
 - Data-based methods
 - Phys. Rev. D 76:052006 (2007)
 - Phys. Lett. B 626:55 (2005)
- ongoing effort (Renkel, Ilchenko)
 - Optimization of kinematic reconstruction and likelihood
 - Jet energy calibration (main systematic uncertainty)
 - Monte Carlo production and systematics
- For the future
 - Current uncertainty (1 fb⁻¹): 4.8 (statistical) and 2.0 (systematic) GeV
 - In 10 fb⁻¹ main improvement will be in dilepton channels:
 - total uncertainty 1.3% alone

SEARCH FOR NEW PHYSICS AT ATLAS

• Strong indirect experimental evidence for dark matter

- Supersymmetry?
 - R-parity conserving models
 - Jet+leptons+Etmiss signatures (e.g. ATL-PHYS-COM-2008-167)
- Model independence is valuable (we're doing this on D0)
- Strong theoretical motivation for Higgs particle
 - Higgs -> tautau, WW, ZZ (e.g. COMnote)
 - Jet signatures very interesting
- Gravity not well understood
 - Graviton search very interesting in early data, and further
 - Discovery potential in ~0.2 fb-1: beats Tevatron
 - Higher masses cannot be reached by the Tevatron

Generally need 1 or more fb-1

SEARCH FOR GRAVITON \rightarrow 2 Photons

- An extra-dimension model
 - Attempts to understand hierarchy problem
 - Randall-Sundrum provides two photon signature
 - distinguishes it from other high mass resonances
- Strengths of search
 - Excellent energy resolution and photon fake rates
 - Quick sensitivity to high masses: good use of LHC energy
- Effort so far (Hadavand, Dindar)
 - First demonstration of full analysis sensitivity in 14 TeV collisions
 - ATL-PHYS-INT-2009-046 (2009).
 - 7 TeV parameter (mass, coupling) sensitivity
 - First data checks

ATLAS SOFTWARE

• Online monitoring

- Responsiveness and efficiency important
- 'Gatherer' in High Level Trigger system integrates results

Data Quality

- Software framework to analyze monitoring output
 - Online and offline instances
 - Several components: algorithms, data interfaces, display GUI
- Calorimeter/Jets data quality
 - Low-level components: clusters, towers
 - Expect migration toward jet/Etmiss performance and calibration