Colorful Physics for the Tevatron and LHC

Andy Haas, SLAC

SMU Video Seminar February 21, 2011

What is "color flow" ??

- QCD color charge is conserved locally
 - It "flows", just like electric charge
- Quarks carry one color (triplet)
- Gluons carry a color and an anti-color (octet)
- Others (W,Z,H,etc.) carry no color (singlet)
- Pulling apart a color from its anti-color takes a lot of energy (~1 GeV/fm)
 - "color string" or "color connection" formed
- Eventually color strings "break" by pulling quarks out of the vacuum \rightarrow hadronization

How to see color flow \rightarrow "Jet Pull"

Jets are not "round" → shape is influenced by color flow !!! Pull vectors point more *towards* each other for color singlet than octet

0.5 RunII cone jet, loop over all cells in dR<0.7: $\vec{\theta} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r_i}$

where r points from jet center to each cell

Matt Schwartz and Jason Gallicchio Phys.Rev.Lett.105:022001,2010 http://arxiv.org/abs/1001.5027

How to see color flow \rightarrow "Jet Pull"

Jets are not "round" → shape is influenced by color flow !!! Pull vectors point more *towards* each other for color singlet than octet

where r points from jet center to each cell

Matt Schwartz and Jason Gallicchio Phys.Rev.Lett.105:022001,2010 http://arxiv.org/abs/1001.5027

Low mass SM Higgs

Additional difference between H->bb and g->bb:

- H is color singlet b's must have same color and are "connected together"
- g is color octet b's have different color and are "connected to beam"

Example from DO Higgs analysis

Background (mostly octet) shape well-modeled by MC

But is the signal (singlet) shape well-modeled by MC?

("Color flow" studied at LEP, but not jet pull, and these are hadron collisions...)

Testing color singlet jet pull in data

- Need clean sample of W/Z/H decays to jets!
- ttbar is the most promising
 - Have ~500 double b-tagged lepton+jet ttbar events at D0
 - ~90% pure sample
- W->jj decay is pure color singlet
- Verifying singlet color flow / jet pull for the first time ever at a hadron collider !

Jet pull reconstruction

- Do a "Toy MC" of calorimeter to see effects individually of:
 - detector granularity
 - energy thresholds / resolution
 - detector noise / pileup

- Look at light jets in anti-b-tagged W+jets samples
- Good data/MC agreement, for both jets

W + 2 light jets sample

W + 2 light jets sample

Checks of jet pull reconstruction

- Jet pull magnitude (amount of eccentricity) is also well-modeled
- But excess eccentricity is induced by the ICR
 - Corrected for by adding a vector to the jet pull opposite to ICR direction
- Correction is also ~20% different for data/MC, used as systematic

Checks of jet pull reconstruction

• Look at jets which were split and not split

OK - back to ttbar !

Added "jet pull" variables to standard DO I+jets analysis

5.3/fb L+jets selection

- Dataset: Run IIa & full RunIIb2 (Summer09 extended)
- SuperOr trigger for e+jets, SingleMuonTrigger for mu+jets Run IIb, MuJets for Run Iia
 - SingleMuonTrigger: Now the fully debugged version!
- Require one isolated electron or muon with p₁ >20GeV
- 3 or at least 4 (in Run IIb: vertex confirmed) jets
 - ◆ p_T>20GeV
 - leading jet >40GeV
- Triangle cut:
 - ejets: d\u00f6(€,lep)>2.2-0.045€
- Additional cuts in mu+jets: M^w_⊤<250GeV & ∉<250GeV

Alpgen+Pythia, top mass 172.5GeV

Standard CSG MC samples

tŦ MC:

<u>Extra Cuts:</u> >=2 L4 b-tags 4 or >=5 jets |mW-(jj)|<30

Studies of ttbar lepton+jets

66% (46%) pure W->jj decays in |M-mW|<30 GeV for 4 (>=5) jets

> 2 b-tags

 49 ± 8

 7 ± 2

 4 ± 1

 9 ± 1

572

 7 ± 3

 3 ± 1

 1 ± 1

 2 ± 1

156

Studies of ttbar lepton+jets

What do we expect from (full) MC?

Jet pull in ttbar, data/MC

- Good data/MC agreement, for both "w" and b jets
- w-jets peak more towards zero (pointing towards each other)!
- But this is not an apples-to-apples comparison \rightarrow different kinematics and flavor for the light and b jets
- Next we do a *direct* comparison, in events with identical kinematics

What "color" is the X in ttbar->bbW(->lnu)X(->qq')?

- Of course we know that X is a W, which is a color singlet...
- Test our sensitivity to separate singlet/octet and simulation modeling
- ttbar MC with OCTET hadronic"X" decay using MadGraph+Pythia

ALPGEN+Pythia agrees with ALPGEN+Herwig showering

MCNLO+Herwig agrees with plain Pythia

- Various Pythia "tunes", underlying event, other parameters, etc.
 - All give similar jet pull shapes
- Tune ACR is flatter, *unphysical* color reconnection model for W

- Recent Pythia tunes have a more physical way of turning on/off color reconnection, while still maintaining (most) agreement with UE
- No large effects from color reconnection (theoretically also <10%)

Systematics

•	Limited MC stats for singlet/octet templates – Private production	Source	$+\sigma$	$-\sigma$
		Singlet/octet MC shapes	0.188	-0.188
		Jet pull reconstruction	0.100	-0.093
		Jet energy resolution	0.033	-0.013
	 Managed to make ~1M events 	Vertex confirmation	0.028	-0.029
	 Still less than statistical uncertainty from data 	PYTHIA tunes	0.023	-0.025
		Jet energy scale	0.024	-0.009
		Jet reconstruction and identification	0.017	-0.017
		$t\bar{t} \bmod ling$	0.014	-0.033
•	Next largest is data/MC correction for ICR region	Event statistics for matrix method	0.009	-0.010
		Other Monte Carlo statistics	0.009	-0.007
		Multijet background	0.006	-0.007
		Total systematic	0.222	-0.218

Systematics

Other systematics (standard in ttbar analyses) are found to be very small...

Summary of systematics on $f_{Singlet}$ with standard method					
Source	sigma+	sigma-			
Event pre-selection	0.000	-0.000			
Muon identification	0.001	-0.000			
Muon resolution and scale	0.000	-0.000			
Electron identification and smearing	0.001	-0.000			
Electron scale	0.000	-0.000			
Luminosity reweighting	0.000	-0.000			
Z p_T reweighting	0.001	-0.000			
EM triggers	0.000	-0.000			
Muon triggers	0.001	-0.001			
Monte Carlo background x-section	0.001	-0.001			
Monte Carlo signal & bkgd branching ratio	0.000	-0.000			
b-Jet energy scale	0.001	-0.000			
Taggability in data	0.001	-0.000			
b-tag TRF	0.000 (0.001)	-0.000 (0.000)			
light tag TRF	0.000 (0.000)	-0.000 (0.000)			
b fragmentation	0.000	-0.000			
W fractions matching + higher order effects	0.003	0.003 -0.004			
Luminosity	0.001	-0.000			

What "color" is the X in ttbar->bbW(->lnu)X(->qq')?

Color flow is extremely useful !

Jet pull is a new, general tool that makes it possible to reliably use color information !

Examples of what you can do with color flow:

- Learn new details of QCD (color reconnection, test "string theory"...)
- Understand SUSY decay chains
 - Can tell gluino decay from squark decay
 - Help pair jets coming from the same decay
- Separate s-channel from t-channel single-top
- Technicolor (predicts some heavy octets)
- Many other BSM models
- MSSM Higgs (b(h->bb), h is singlet!)
- SM Higgs (W/Z(H->bb), tt(H->bb), ...)

Summary

Color flow is an interesting and useful tool, but only if you can simulate and reconstruct it reliably Jet pull is a new method which makes this possible

Performed the first measurement of color flow in ttbar data Data contain a color singlet W->jj decay, within uncertainties

- You can sleep well tonight knowing that !

Measures accuracy of simulations / jet pull for color-singlet decays

- Determines systematic uncertainty for jet pull in e.g. H->bb search

With more data and studies, jet pull will become a precise tool Plan to look at jet pull in ATLAS simulations/data soon

Backup Slides

W matching fraction

Checks of jet pull reconstruction

• Look at jets which overlap and don't overlap for .5 and .7 cones

Checks of jet pull reconstruction

- Bias of jet pull direction from *non-uniformity of calorimeter vs. eta* Particularly the ICR has lower response and more noise
- Fairly well-modeled by the MC, within ~20%
- Relative jet pull angle is not significantly affected

Full MC vs. MC truth

~75% more separation of "w" vs. b pairs in MC truth

Matching W in ttbar MC truth

- Look at light jets in anti-b-tagged W+3 jets sample
- Good data/MC agreement, for both jets

- Look at light jets in *b-tagged* W+3 jets sample
- Good data/MC agreement, for both jets •

- Look at *anti-b-tagged* W+4 jets samples
- Good data/MC agreement, for both sets of jets
- Flatter than in real ttbar (since there's not real color connections?)

Separated by eta's of jets

Separated by eta's of jets

fitted distribution (combined) for dR>2

fitted distribution (combined) for dR<2 and |leading jet eta|<1 and |second leading jet eta|>1

fitted distribution (combined) for |mjj-mW|>30GeV

Results in various sub-samples

$\operatorname{channel}$	$\sigma_{tar{t}}[{ m pb}]$	$f_{Singlet}$
e+jets	$7.78^{+0.40}_{-0.39} (\text{stat})^{+0.82}_{-0.76} (\text{syst+lumi})$	$0.394^{+0.483}_{-0.491}$ (stat) $^{+0.305}_{-0.297}$ (syst)
μ +jets	$9.67^{+0.53}_{-0.51} (\text{stat})^{+1.06}_{-0.97} (\text{syst+lumi})$	$1.012^{+0.557}_{-0.586}$ (stat) $^{+0.291}_{-0.294}$ (syst)
$\operatorname{Run}\operatorname{IIa}$	$8.40^{+0.65}_{-0.62} (\text{stat})^{+0.88}_{-0.81} (\text{syst+lumi})$	$0.081^{+0.595}_{-0.609}$ (stat) $^{+0.366}_{-0.367}$ (syst)
$\operatorname{Run}\operatorname{IIb}$	$8.59^{+0.37}_{-0.36}$ (stat) $^{+0.98}_{-0.90}$ (syst+lumi)	$1.041^{+0.483}_{-0.491}$ (stat) $^{+0.275}_{-0.268}$ (syst)

b-jets

• b-jets don't care much about the color representation of the "X"

Pileup

- Amount of "noise" increases with #PV
- Changes average relative jet pull angles
- Separation between singlet and octet degrades only slightly

Event display

Run 250150 Evt 12909475 Mon Mar 9 13:06:04 2009

Event display

Run 246692 Evt 31312096 Thu Oct 23 09:37:40 2008

