Black holes, alone and in binaries

Aaron Zimmerman Canadian Institute for Theoretical Astrophysics

> SMU Physics Colloquium January 22, 2018

Outline

- Motivation
- Black holes in binaries two-body problem
- Black holes alone- BH ringdown
- Gravitational wave astronomy: LIGO's second observational run

Advanced LIGO and Virgo

Hanford, WA

Cascina, Italy

Livingston, LA

Photos courtesy LVC

A new window

LVC PRL 116, 131103 (2016) 4

A new window

4

A new window

4

First detection: GW150914

LVC PRL 116, 061102 (2016)

THE TWO-BODY PROBLEM

Newtonian two-body problem

$$\vec{F} = m\vec{a}$$

$$\vec{F}_g = -G\frac{m_1m_2}{r^2}\hat{r}$$

Newtonian two-body problem

 $\vec{F} = m\vec{a}$

 $\vec{F}_g = -G \frac{m_1 m_2}{r^2} \hat{r}$ $r = \frac{a(1-e^2)}{1+e\cos\psi}$

Newtonian two-body problem

N

Credit: NASA/Cassini

$$\vec{F}_g = -G\frac{m_1m_2}{r^2}\hat{r}$$

$$r = \frac{a(1-e^2)}{1+e\cos\psi}$$

Enter general relativity

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

 $\nabla^{\mu}T_{\mu\nu} = 0$

Emission of gravitational waves

$$P \sim \frac{G}{c^5} (\ddot{Q}_{ij})^2$$

$$E = -\frac{Gm_1m_2}{2r}$$

Emission of gravitational waves

$$\begin{split} P &\sim \frac{G}{c^5} (\ddot{Q}_{ij})^2 & GM = \Omega^2 r^3 \\ E &= -\frac{Gm_1 m_2}{2r} & \dot{E} = -P \end{split}$$

Emission of gravitational waves

$$\begin{split} P &\sim \frac{G}{c^5} (\ddot{Q}_{ij})^2 & GM = \Omega^2 r^3 \\ E &= -\frac{Gm_1 m_2}{2r} & \dot{E} = -P & \Omega \propto (t-t_c)^{-3/8} \end{split}$$

GWs from black hole binaries

BLACK HOLES IN BINARIES

Modeling the two-body problem

Modeling the two-body problem

Modeling the two-body problem

Numerical relativity

 $G_{\mu\nu} = 8\pi T_{\mu\nu} \quad \begin{array}{c} 3+1 \text{ split} \\ \nabla^{\mu}T_{\mu\nu} = 0 \end{array} \quad \begin{array}{c} 4 \text{ constraints} \\ 12 \text{ evolution} \\ \text{eqns} \end{array}$

Numerical relativity

Numerical relativity

Mroue et al. PRL (2013)

Black hole mergers

Credit: H. Pfeiffer/SXS Collaboration 15

Black hole mergers

Credit: H. Pfeiffer/SXS Collaboration 15

ġ

Distance

AZ, Lewis, Pfeiffer, PRL (2016)

Distance

Lewis, AZ, Pfieffer, CQG (2017)¹⁷

Eccentric, precessing motion

Eccentric, precessing motion

Lewis, AZ, Pfieffer, CQG (2017) ¹⁹

periastron advance

ġ

Lewis, AZ, Pfieffer, CQG (2017) ¹⁹

Resonant orbits

Lewis, AZ, Pfieffer, CQG (2017) 20

Lewis, AZ, Pfieffer, CQG (2017) 20

Black holes in binaries

- Relativistic two body problem
- Analytic appx and numerical sims needed
- Discoveries at the intersection
- Models for GW astronomy
- Future: higher mass ratios, drive theory
- Advances required: next gen code SpECTRE

BLACK HOLE RINGDOWN

Black hole ringdown

Waves around black holes

Waves around black holes

$$\psi_{\omega lm} \sim \frac{1}{\pi} e^{-i\omega t} u_{\omega lm}(r) Y_{lm}(\theta, \phi)$$

$$\varphi_{\omega lm} \sim \frac{-e}{r} \qquad u_{\omega lm}(r) I_{lm}(0, \varphi)$$

$$\frac{d^2 u_{\omega lm}}{dr_*^2} + \left(\omega^2 - V\right) u_{\omega lm} = 0$$

Waves around black holes

24

Quasinormal modes

Quasinormal modes

25

Modes of rotating black holes

- Orbits split with inclination
- Modes split
- Slower decay with higher spin

 $(\omega,\tau) \to (M,\chi)$

Yang et al. w/AZ (2012)

Berti, Cardoso, Starinets (2009) 26

The ringdown of GW150914

27 LVC PRL 116, 061102 (2016)

The ringdown of GW150914

28 LVC PRL 116, 221101 (2016)

Modes of rapidly rotating BHs

- Black holes spins have a theoretical max
- Near maximum spin, new approx

$$\epsilon^2 = 1 - \chi^2$$

$$\omega \approx m\Omega_H \qquad \tau \approx \frac{1}{\epsilon(n+1/2)}$$
 Slow decay!

× jy

Teukolsky and Press (1974), Detweiler (1980), Hod (2008), Yang et al w/ AZ (2012), Yang, AZ et al. (2013a, 2013b)

Collective oscillation of modes

Yang, AZ et al. (2013b) ³⁰

Collective oscillation of modes

Yang, AZ et al. (2013b) 3

30

Collective oscillation of modes

Yang, AZ et al. (2013b) ³⁰

Near-horizon response

Ringdown of black holes

- Unique probe of BHs, tests of GR
- Weak signals, combine many observations
- Rapidly rotating BHs: collective oscillations
- Transient instabilities
- Nonlinear ringdown: resonances, turbulence

GW ASTRONOMY: THE SECOND OBSERVING RUN

ZIGO Scientific Collaboration

GW170104: A distant BH binary

35

GW170104: A distant BH binary

36 LVC w/ AZ PRL 118, 221101 (2017)

GW170104: A distant BH binary

³⁶ LVC w/ AZ PRL 118, 221101 (2017)

GW170814: First three-detector observation

37 LVC w/ AZ PRL 119, 141101 (2017)

GW170817: Something new

³⁸ Credit: Alex Nitz/Max Planck Institute for Gravitational Physics/LIGO LVC w/ AZ PRL 119, 161101 (2017)

39 LVC w/ AZ PRL 119, 161101 (2017)

Nuclear physics with GW170817

D'

40 LVC w/ AZ PRL 119, 161101 (2017)

Electromagnetic counterpart

LVC and EM partners w/ AZ 41 ApJ Lett 848, L12 (2017)

Black Holes of Known Mass

LIGO/VIRGO

Summary

- Sources for GW astronomy: a new window on the universe
- Two-body problem
 - Intersection of analytic theory and sims
- Black hole ringdown
 - Probes nature of BHs, tests of GR
- GW astronomy: second observational run
 - Tests of GR, nuclear physics, cosmology
 - Binary parameters reveal lives and deaths of stars

