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First detection: GW150914

• Masses  

• Final black hole  

• Luminosity 

m1 = 36+5
�4M� m2 = 29+4

�4M�

Mf = 62+4
�4M� �f = 0.67+0.05

�0.07
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LVC PRL 116, 061102 (2016)
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Figure 4. Poincaré surfaces of section of the 2 degree of freedom autonomous Hamiltonian, H (expression (17)). The left panel depicts a surface of section with
nominal parameters. Specifically, the black-gold points depict a numerically obtained surface of section and the color represents the local chaotic diffusion coefficient,
computed as the square of the change in action between sequential section points divided by the corresponding change in time. Blue curves denote quasi-periodic
trajectories. The critical curves (in the pendulum approximation) of the (φ − ψ) resonance (gold), and (φ − 2ψ) resonance (cyan) are over-plotted on the section. The
resonance widths, ∆ϒ as well as the distance between the resonances, δϒ are depicted on the side of the panel. The curves bounding the admissible domain within which
the actions are real are additionally labeled. The y axis of the section is scaled such that 2ϒ/Λ ≃ e2 − i2. The right panel depicts an equivalent surface of section, but
with a coupling parameter (Fei ) that has been reduced by a factor of 0.6. Naturally, as the reduction in the nonlinear coupling brings the system closer to integrability,
the majority of the phase space on the right panel is occupied by quasi-periodic trajectories. The vicinity of the unperturbed separatrixes of the analytically identified
(φ − ψ) and (φ − 2ψ) resonances are encompassed by thin chaotic layers and are shown with black points. Meanwhile, the corresponding quasi-periodic resonant
trajectories are shown in red. Note that in addition to the two primary resonances, there also exists an intricate web of yet higher order secular resonances. Although
the angles associated with these resonances also undergo chaotic evolution under nominal parameters, their contribution to Mercury’s stochasticity is sub-dominant.

which yields the action-angle coordinates

υ = (φ − ψ)/2, ϒ = Φ − Ψ,

ν = (φ + ψ)/2, V = Φ + Ψ. (26)

Given that both φ and ψ circulate rapidly into the same (neg-
ative) direction, so does the newly defined angle ν. However,
a cursory inspection of the Hamiltonian (provided nominal pa-
rameters) reveals that although neither φ nor ψ undergo bounded
oscillations, their time-derivatives are nearly identical, φ̇ ≈ ψ̇ ,
meaning that the beat angle υ can be expected to resonate.13

With this consideration in mind, we construct a Poincaré sur-
face of section with respect to the rapidly circulating angle
at ν = π .

The surface of section for the nominal value of the Hamil-
tonian H0 is shown in the left panel of Figure 4. The pink and
green regions in the figure show the inadmissible part of phase
space, while thick black curves denote the boundaries of the
admissible region (Equation (19)). Quasi-periodic trajectories
are shown as blue curves, while the chaotic sea is depicted with
black-gold points. The color scale inherent to the chaotic sea
represents the local chaotic diffusion coefficient Dϒ, which is
computed as the square of the change in action ϒ divided by
the time difference between successive section points. Note that
the local diffusion coefficient appears to track the deformed
structure of the underlying resonances.14

Upon examination, it is immediately clear that the vast
majority of phase space is occupied by chaotic trajectories,
signaling gross overlap of at least two high-order secular
resonances (Chirikov 1959). In other words, there exist at least
two high-order secular resonances whose equilibria lie within
the admissible region. In an effort to identify the overlapping
resonances, let us begin by plotting the critical curve of the
(φ − ψ) resonance on the surface of Section 4.

13 In fact, υ is a chaotic angle, as was first shown by Laskar (1989; see also
Sussman & Wisdom 1992; Lithwick & Wu 2011).
14 See Murray et al. (1985) for an in-depth discussion of the non-uniformity of
diffusion in a chaotic layer.

The coefficient of the harmonic is obtained at order ϵ2 in the
perturbation series:

Cϵ2 cos(φ − ψ) =
(
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2

)
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(3)
i Ψ + FeiΦ)2)−1]

. (27)

Obviously, the function C exhibits a rather complex dependence
on the actions. With the goal of intelligibility in mind, here we
replace Φ and Ψ in Equation (27) with their nominal values,
corresponding to the amplitudes of the g1 and f1 eigenmodes
of Mercury’s Lagrange–Laplace decomposition. As such, the
amplitude of the harmonic is assumed to be constant.

Augmenting the integrable Hamiltonian (20) with an exclu-
sive perturbation (27), the Hamiltonian is cast into a familiar
pendulum-like form:

Hϵn = Fϵn

(
ϒ − ϒϵn

0

)2 + Cϵn cos(nυ), (28)

where ϒϵn

0 is an action corresponding to the fixed points of Hϵn

and n is the order of resonance. Completing the square, the
parameters of Hϵ2 take on the following forms:

Fϵ2 =
(
F (3)

e + F
(3)
i − Fei

)/
4,

ϒϵ2

0 =
(
FGR + F (1)

e + g5 − F
(1)
i − f2 + F (3)

e V

− F
(3)
i V

)
(F (3)

e − Fei + F
(3)
i )−1, (29)

where V is evaluated at nominal actions.
The separatrix of the corresponding resonance is shown as

a gold curve in action-angle variables in the left panel of Fig-
ure 4. By deforming the dynamics of the resonance into that a
pendulum (by forcing C to be constant), we allow the critical
curve to not be constrained by the admissible domain of the
Hamiltonian (17). Although a more careful treatment of
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Enter general relativity
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Ė = �P

⌦



Emission of gravitational waves

10

⌦ / (t� tc)
�3/8

E = �Gm1m2

2r

P ⇠ G

c5
(
...
Qij)

2 GM = ⌦2r3

Ė = �P

⌦



11

GWs from black hole binaries

�/�

��
��
��

Inspiral RingdownMerger

h



BLACK HOLES IN BINARIES

12



8

[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,

()⎛
⎝⎜⎞

⎠⎟ Ω=+− mm
e

D

1
,

N
0
2

12
0
3  (9)

to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.
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Modeling the two-body problem

Distance

Numerical 
Simulations

Mass  
Ratio

Post-Newtonian

Self-force

13

Figure 1: Simulation of the inspiral and merger of two black holes consistent with the first
GW detection GW150914 [1]. These images are snapshots of an animation displayed in the
press conference announcing the first observation of gravitational waves. Each image shows a
composite of several aspects of the simulation: The colorful plane represents the instantaneous
orbital plane, where the red/yellow/green color-coding near the center indicates the rate of
flow of time (red being slowest) and the blue/pruple colors represent outgoing gravitational
waves. The height of the surface is related to the spatial Ricci-scalar of the spatial metric,
and gives an impression of the curvature of space. The horizons of the two black holes are
shown somewhat o↵set from the plane. The top left corner indicates the time in second of
each frame, relative to merger. Simulation performed on GPC under a previous Compute
Canada resource allocation.

electro-magnetic astronomy. LIGO relies on knowledge of the expected gravitational wave-
forms for matched-filtering detection algorithms (e.g.[2]) and for Monte-Carlo-Markov-Chain
parameter estimation [3]. Furthermore, a detailed understanding of coincident electromag-
netic and neutrino emission will help identify electromagnetic counterparts and maximize
the information one can learn from coincident GW and electro-magnetic observations of
astrophysical systems.

The PI’s research group has a long track record of numerical simulations of compact
object binaries to support GW astronomy. As explained in more depth in Section 5,
the waveform templates used to identify the GWs, to perform parameter estimation, and
to test general relativity are all based on computations performed at Compute Canada.
Validation-studies after the GW discoveries are also based on waveforms either computed
in Canada (see Figure 1), or are computed elsewhere with computer codes developed in
Canada.

2
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Figure 1: Simulation of the inspiral and merger of two black holes consistent with the first
GW detection GW150914 [1]. These images are snapshots of an animation displayed in the
press conference announcing the first observation of gravitational waves. Each image shows a
composite of several aspects of the simulation: The colorful plane represents the instantaneous
orbital plane, where the red/yellow/green color-coding near the center indicates the rate of
flow of time (red being slowest) and the blue/pruple colors represent outgoing gravitational
waves. The height of the surface is related to the spatial Ricci-scalar of the spatial metric,
and gives an impression of the curvature of space. The horizons of the two black holes are
shown somewhat o↵set from the plane. The top left corner indicates the time in second of
each frame, relative to merger. Simulation performed on GPC under a previous Compute
Canada resource allocation.

electro-magnetic astronomy. LIGO relies on knowledge of the expected gravitational wave-
forms for matched-filtering detection algorithms (e.g.[2]) and for Monte-Carlo-Markov-Chain
parameter estimation [3]. Furthermore, a detailed understanding of coincident electromag-
netic and neutrino emission will help identify electromagnetic counterparts and maximize
the information one can learn from coincident GW and electro-magnetic observations of
astrophysical systems.

The PI’s research group has a long track record of numerical simulations of compact
object binaries to support GW astronomy. As explained in more depth in Section 5,
the waveform templates used to identify the GWs, to perform parameter estimation, and
to test general relativity are all based on computations performed at Compute Canada.
Validation-studies after the GW discoveries are also based on waveforms either computed
in Canada (see Figure 1), or are computed elsewhere with computer codes developed in
Canada.
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Figure 1: Simulation of the inspiral and merger of two black holes consistent with the first
GW detection GW150914 [1]. These images are snapshots of an animation displayed in the
press conference announcing the first observation of gravitational waves. Each image shows a
composite of several aspects of the simulation: The colorful plane represents the instantaneous
orbital plane, where the red/yellow/green color-coding near the center indicates the rate of
flow of time (red being slowest) and the blue/pruple colors represent outgoing gravitational
waves. The height of the surface is related to the spatial Ricci-scalar of the spatial metric,
and gives an impression of the curvature of space. The horizons of the two black holes are
shown somewhat o↵set from the plane. The top left corner indicates the time in second of
each frame, relative to merger. Simulation performed on GPC under a previous Compute
Canada resource allocation.

electro-magnetic astronomy. LIGO relies on knowledge of the expected gravitational wave-
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parameter estimation [3]. Furthermore, a detailed understanding of coincident electromag-
netic and neutrino emission will help identify electromagnetic counterparts and maximize
the information one can learn from coincident GW and electro-magnetic observations of
astrophysical systems.
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cubes, cylindrical shells, and spherical shells. This domain
decomposition is shown in Fig. 3. Each subdomain is
distorted by a coordinate mapping so that the subdomains
do not overlap and so that the union of these subdomains
covers the entire 3-dimensional region (minus two excised
holes) inside a spherical outer boundary RBdry of order a

few hundred M from the source (see Sec. III C 2 where we
compare runs with different values of RBdry). More details

about the merger domain decomposition are given in the
appendix. It avoids certain instabilities which appear for
domain decompositions with overlapping grid close to
merger [49]. In addition, we choose a slightly higher
resolution for the nonoverlapping grid than for the over-
lapping grid used during inspiral, because the merger has
features with a shorter length scale than in the inspiral.
After the binary has reached about t! 2M before merger,
we increase the resolution one last time, particularly in the
region between the two holes.4

After a common apparent horizon forms, we regrid onto
a new set of subdomains consisting of nested distorted
spherical shells. The innermost boundary is just inside
the common apparent horizon, and conforms to its shape.
The outermost boundary is the same RBdry used in the

merger. The matching of the ringdown to the inspiral is
discussed in Ref. [49].

F. Relation to other SpEC simulations

Several other SpEC simulations of binary black holes
have been presented in the literature [40,42–44,52]. In this
section, we briefly describe some computational details

common to all SpEC simulations, and we describe how
some of the new computational infrastructure presented
here relates to these other simulations.
Our apparent horizon finder expands the radius of the

apparent horizon as a series in spherical harmonics up to
some order L. We utilize the fast flow methods developed
by Gundlach [80] to determine the expansion coefficients.
The quasilocal spin S of each black hole is computed with
the spin diagnostics described in Ref. [81]. We compute the
spin from an angular momentum surface integral [82,83]
using approximate Killing vectors of the apparent hori-
zons, as described in Refs. [81,84] (see also Refs. [85,86]).
We define the dimensionless spin by

! ¼ S

M2 : (23)

We extract gravitational waves from our simulations by
two independent methods. We compute the Newman-
Penrose scalar !4 using the same procedure as described
in Refs. [51,52]. This involves constructing the correct
contraction of the Weyl curvature tensor at several finite-
radius coordinate-spheres far from the source and project-
ing into spin-weighted spherical harmonics. We also
extract the Regge-Wheeler-Zerilli (RWZ) [87,88] gravita-
tional wave strain h‘m as formulated in Ref. [89]. The
implementation of this formulation in the SpEC code is
described in Ref. [90] (see also Ref. [26] and the appendix
of Ref. [25] for further details). Both the !4 and the RWZ
waveforms, which are extracted at a series of finite-radius
coordinate spheres, are extrapolated to infinite distance
from the source [91]. The !4 waveforms generally agree
well with the (second time derivative of the) RWZ h‘m
waveforms, although for some purposes RWZ is a better
choice than !4 or vice versa. For example, computing
strain from !4 requires two time integrations and careful
choice of integration constants, so it is simpler and less
error-prone to instead use RWZ to compute strain.
Similarly, computing the recoil velocity requires either a
time derivative of h‘m or a time integral of !4; the time
derivative amplifies noise in the waveform, and this affects
the recoil velocity enough that it is better to use a time
integral of !4 for that purpose.
In parallel to the present work, superposed Kerr-Schild

initial data [81,92,93] have been developed and applied to
SpEC simulations of black holes with high spins [40,44].
The algorithmic improvements discussed in the present
work are generally compatible with superposed Kerr-
Schild simulations. Specifically, the root-finding procedure
discussed in Sec. II B can be applied to superposed Kerr-
Schild initial data. This requires a change of free parame-
ters from excision sphere radii to masses of the conformal
black holes in the superposed Kerr-Schild initial data.
Early tests indicate that the root-finding procedure works
satisfactorily. However, more exhaustive tests, especially
for high spin systems, will be necessary.

FIG. 3 (color online). Domain decomposition used for the
plunge and merger for mass ratio q ¼ 2. The thick blue lines
represent subdomain boundaries in the z ¼ 0 plane. The region
z > 0 is not shown. Also not shown is the additional deformation
of the grid near the black holes that matches the shape of the
excision spheres to the apparent horizons.

4The processes of regridding, changing resolution, and chang-
ing the coordinate mapping have since been automated; this will
be described in a future work.
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cubes, cylindrical shells, and spherical shells. This domain
decomposition is shown in Fig. 3. Each subdomain is
distorted by a coordinate mapping so that the subdomains
do not overlap and so that the union of these subdomains
covers the entire 3-dimensional region (minus two excised
holes) inside a spherical outer boundary RBdry of order a

few hundred M from the source (see Sec. III C 2 where we
compare runs with different values of RBdry). More details

about the merger domain decomposition are given in the
appendix. It avoids certain instabilities which appear for
domain decompositions with overlapping grid close to
merger [49]. In addition, we choose a slightly higher
resolution for the nonoverlapping grid than for the over-
lapping grid used during inspiral, because the merger has
features with a shorter length scale than in the inspiral.
After the binary has reached about t! 2M before merger,
we increase the resolution one last time, particularly in the
region between the two holes.4

After a common apparent horizon forms, we regrid onto
a new set of subdomains consisting of nested distorted
spherical shells. The innermost boundary is just inside
the common apparent horizon, and conforms to its shape.
The outermost boundary is the same RBdry used in the

merger. The matching of the ringdown to the inspiral is
discussed in Ref. [49].

F. Relation to other SpEC simulations

Several other SpEC simulations of binary black holes
have been presented in the literature [40,42–44,52]. In this
section, we briefly describe some computational details

common to all SpEC simulations, and we describe how
some of the new computational infrastructure presented
here relates to these other simulations.
Our apparent horizon finder expands the radius of the

apparent horizon as a series in spherical harmonics up to
some order L. We utilize the fast flow methods developed
by Gundlach [80] to determine the expansion coefficients.
The quasilocal spin S of each black hole is computed with
the spin diagnostics described in Ref. [81]. We compute the
spin from an angular momentum surface integral [82,83]
using approximate Killing vectors of the apparent hori-
zons, as described in Refs. [81,84] (see also Refs. [85,86]).
We define the dimensionless spin by

! ¼ S

M2 : (23)

We extract gravitational waves from our simulations by
two independent methods. We compute the Newman-
Penrose scalar !4 using the same procedure as described
in Refs. [51,52]. This involves constructing the correct
contraction of the Weyl curvature tensor at several finite-
radius coordinate-spheres far from the source and project-
ing into spin-weighted spherical harmonics. We also
extract the Regge-Wheeler-Zerilli (RWZ) [87,88] gravita-
tional wave strain h‘m as formulated in Ref. [89]. The
implementation of this formulation in the SpEC code is
described in Ref. [90] (see also Ref. [26] and the appendix
of Ref. [25] for further details). Both the !4 and the RWZ
waveforms, which are extracted at a series of finite-radius
coordinate spheres, are extrapolated to infinite distance
from the source [91]. The !4 waveforms generally agree
well with the (second time derivative of the) RWZ h‘m
waveforms, although for some purposes RWZ is a better
choice than !4 or vice versa. For example, computing
strain from !4 requires two time integrations and careful
choice of integration constants, so it is simpler and less
error-prone to instead use RWZ to compute strain.
Similarly, computing the recoil velocity requires either a
time derivative of h‘m or a time integral of !4; the time
derivative amplifies noise in the waveform, and this affects
the recoil velocity enough that it is better to use a time
integral of !4 for that purpose.
In parallel to the present work, superposed Kerr-Schild

initial data [81,92,93] have been developed and applied to
SpEC simulations of black holes with high spins [40,44].
The algorithmic improvements discussed in the present
work are generally compatible with superposed Kerr-
Schild simulations. Specifically, the root-finding procedure
discussed in Sec. II B can be applied to superposed Kerr-
Schild initial data. This requires a change of free parame-
ters from excision sphere radii to masses of the conformal
black holes in the superposed Kerr-Schild initial data.
Early tests indicate that the root-finding procedure works
satisfactorily. However, more exhaustive tests, especially
for high spin systems, will be necessary.

FIG. 3 (color online). Domain decomposition used for the
plunge and merger for mass ratio q ¼ 2. The thick blue lines
represent subdomain boundaries in the z ¼ 0 plane. The region
z > 0 is not shown. Also not shown is the additional deformation
of the grid near the black holes that matches the shape of the
excision spheres to the apparent horizons.

4The processes of regridding, changing resolution, and chang-
ing the coordinate mapping have since been automated; this will
be described in a future work.
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This simulation catalog is publicly available [26] and
will have other applications besides its primary goal of
facilitating GW astronomy.

Techniques.—The simulations are computed using the
Spectral Einstein Code (SpEC) [27]. Quasiequilibrium
[28,29] initial data are constructed [30] to solve the
Einstein constraint equations [31] for binaries with low
(! 10"4) eccentricity [32–34] and are evolved using a
generalized harmonic formulation [35–38] of Einstein’s
equations and damped harmonic gauge [39–41]. The adap-
tively refined [42] grid extends from pure-outflow excision
boundaries conforming to the shapes of the apparent

horizons [24,41,43,44] to an artificial outer boundary
where constraint-preserving boundary conditions [38,45,46]
are imposed. After the merger, the grid has only a single
excision boundary [24,43]. Gravitational wave extraction
and extrapolation of waveforms to infinity are described in
Refs. [25,32,47–51].
No fine-tuning or trial and error is required for our

current evolution method, for regions of parameter space
covered by this catalog. Mesh refinement and grid transi-
tions (such as regridding to a single excision boundary at
merger) are automatic. This enables the completion of
many simulations with little cost in human time.
Catalog.—Figure 1 represents the parameter-space cov-

erage. The catalog includes (i) 62 new single-spin simula-
tions with !A ¼ 0:5 and !B ¼ 0 ranging from q ¼ 1 to
q ¼ 8, which extend efforts by the NINJA-2 Collaboration
[19] (which contains only three unequal mass, aligned-spin
simulations, and no precessing simulations) and the NRAR
Collaboration [20] (which contains spinning simulations
only for q $ 3), (ii) 32 new simulations with random mass
ratios q 2 ½1; 2& and random spins (!A, !B $ 0:5), (iii) 16
q ¼ 1 simulations with equal, aligned spins [23,52,53],
including one new simulation with the highest BH spin
to date (!A ¼ !B ¼ 0:98), (iv) a high mass ratio, high-spin
(q¼6, !A¼0:9, !B¼0:3), precessing simulation intended
to test numerical capabilities, and (v) 32 nonspinning
simulations, including mass ratios q ¼ 1:5, 5, 8, not con-
sidered in Ref. [22]. Also included are new simulations of
different orbital eccentricities and durations, which facili-
tate calculation of periastron advance [54] and efficient
initial data generation [34].
While we generally reduce orbital eccentricity [33] to

e & 10"4, the catalog contains 43 new simulations with
eccentricities from e < 10"4 up to e ¼ 0:06, representing

FIG. 1 (color online). The parameter space covered by our
catalog. Each point represents a simulation. The axes show the
mass ratio and the spin magnitudes of the larger (blue arrows)
and smaller (red arrows) BHs. Arrows indicate the magnitude
and direction of the spins.

FIG. 2 (color online). Properties of all simulations in the catalog. From top to bottom: Dimensionless initial spin magnitudes !A;B,
angles "A;B between the initial spin vectors and the initial orbital angular momentum, angles#A;B between the line segment connecting
the centers of the black holes and the initial spin vectors projected into the initial orbital plane, mass ratio q ¼ MA=MB, number of
orbits before merger, initial eccentricity e (triangles indicate an upper bound on e), and final remnant spin !f.
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[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,

()⎛
⎝⎜⎞

⎠⎟ Ω=+− mm
e

D

1
,

N
0
2

12
0
3  (9)

to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.

A G M Lewis et al Class. Quantum Grav. 34 (2017) 124001
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[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,
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3  (9)

to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.

A G M Lewis et al Class. Quantum Grav. 34 (2017) 124001
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[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,
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2
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3  (9)

to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.
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[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,
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to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.
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where the effect of the dissipative self-force upon the time derivative of some Kerr constant of 
motion C expands into Fourier modes k and n of the form
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The exponential terms in most cases average to zero since they oscillate rapidly compared to 
the overall evolution of C. At resonance, however, the phase is constant and the respective term 
contributes secularly to /C td d .

A representative resonant phase for each order k n:  is shown in figure 11. Still following 
[116], we say the system is near resonance when Φkn differs from its resonant value by no more 
than 1 radian. This dephasing is indicated in figure 11 by the dashed vertical lines; our simula-
tions satisfy this condition for durations of a few 1000M. The duration ∆tres and frequency 
range ∆Ωθres during which our simulations stay on resonance can be readily determined from 
Φkn. We estimate the number of radial and polar cycles spent on resonance by counting the 
number of relevant coordinate peaks within the resonance. These data are collected in table 2. 
Inspection of table 2 reveals that, with the 2:3 resonance excepted, our simulations remain on 

Figure 11. Pictorial analysis of r-θ resonances for four select resonances. For each 
example, a block of three graphs is presented, titled by the simulation and the resonance 
under consideration. Each block is organized as follows: Top graph: Resonant phase 
Φkn with vertical solid lines marking the resonance, vertical dashed lines bounding one 
radian in resonant phase in either direction, and black dots indicating midpoint times, 
˜+t i , see (13). The resonant phase ( )Φ t56  in the top-left panel is plotted at three different 
numerical resolutions. Bottom left graph: Orbital trajectory during the resonance using 
two line-styles, solid lines represent one resonant cycle centered on the resonance 
(marked by a circle); dashed lines represent the remaining evolution within the resonant 
window. Bottom right graph: Trajectory with inspiral-motion removed, by using the 
envelope-subtracted radius rES (11).

A G M Lewis et alClass. Quantum Grav. 34 (2017) 124001
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[108, 110], and we define dimensionless spin vectors through / χ=Sm iii
2
, where here i  =  1, 2 

labels the black holes. We focus on two sequences of simulations. One sequence has mass 
ratio / == qmm5 12 and χ χ=||=0.6 11

2, and the other sequence has q  =  7 with χ=0.8 1. 
In both cases, we set χ=0 2. These parameters were chosen so that the binary orbits might 
be modelled by motion in Kerr spacetime with mass m1 and spin parameter χ1, together with 
radiation reaction effects and finite mass ratio corrections to the motion. By selecting two 
choices of BH parameters we have some freedom to investigate the effect of varying those 
parameters while keeping computational expense manageable.

For our two choices of () χ q,1 we ran two sets of simulations, using ‘low’ and ‘high’ ini-
tial eccentricities. We targeted the initial eccentricities by using simple Keplerian relations 
between the initial orbital separation and angular velocity of the binary at the moment of 
apastron passage, where we began our simulations. Specifically, the initial data solver takes 
as input an initial expansion factor ȧ0, an initial orbital frequency Ω0, and an initial coordinate 
separation distance D0. We set ȧ0 to zero in all cases, to fix the orbit at apastron. For a given 
initial distance D0, we target a Newtonian eccentricity eN, using the so-called ‘vis-viva’ equa-
tion (which expresses energy conservation for the orbit) at apastron,
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to solve for the appropriate Ω0. We chose eN  =  0.2 for our ‘low eccentricity’ and eN  =  0.3 for 
our ‘high’ eccentricity runs.

The initial separation D0, together with the achieved eccentricity e and the mass ratio q, 
controls the length of the inspiral. In order to facilitate accurate frequency extraction we set 
the simulations to be quite long, using initial distances D0 of 19.5M and 21.125M. This gave 
the same initial Newtonian semi-major axis of /() += DeM 116.25 N 0 for all of our simula-
tions, and they proceeded through ≈− 3060 radial oscillations before merger.

To investigate the effects of precession we ran each simulations for each of the above choices 
of () χ q,1 and eN three times, initializing the spin vector χ1 to form angles of ! 0, ! 10, and ! 20 with 
the computational z-axis in the χ == q5,0.6 1 cases and ! 0, ! 40, and ! 80 in the q  =  7, χ=0.8 1 
cases. The z-axis is normal to the initial orbital plane. These choices of initial inclinations of 
the orbital plane to the spin of the more massive hole spans the full range of orbits from the 
perspective of motion in Kerr, from equatorial to near-equatorial to nearly polar orbits. Figure 1 
plots the trajectories for portions of two of our q  =  7, high eccentricity orbits.

Figure 1. Coordinate trajectories for two q  =  7, χ=0.8 1, high eccentricity simulations. 
Left: An equatorial inspiral, depicted up to the final orbit before merger. Right: About 
28 periastron passages from the middle of an inspiral with a ! 40 inclination. Both panels 
show a 3-dimensional perspective view.

2 Note that for coordinate simulation quantities such as χ we use a flat Euclidean norm.
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Black holes in binaries

• Relativistic two body 
problem 

• Analytic appx and 
numerical sims needed 

• Discoveries at the 
intersection 

• Models for GW astronomy 
• Future: higher mass ratios, 

drive theory 
• Advances required: next 

gen code SpECTRE
21Figure 1: Simulation of the inspiral and merger of two black holes consistent with the first

GW detection GW150914 [1]. These images are snapshots of an animation displayed in the
press conference announcing the first observation of gravitational waves. Each image shows a
composite of several aspects of the simulation: The colorful plane represents the instantaneous
orbital plane, where the red/yellow/green color-coding near the center indicates the rate of
flow of time (red being slowest) and the blue/pruple colors represent outgoing gravitational
waves. The height of the surface is related to the spatial Ricci-scalar of the spatial metric,
and gives an impression of the curvature of space. The horizons of the two black holes are
shown somewhat o↵set from the plane. The top left corner indicates the time in second of
each frame, relative to merger. Simulation performed on GPC under a previous Compute
Canada resource allocation.

electro-magnetic astronomy. LIGO relies on knowledge of the expected gravitational wave-
forms for matched-filtering detection algorithms (e.g.[2]) and for Monte-Carlo-Markov-Chain
parameter estimation [3]. Furthermore, a detailed understanding of coincident electromag-
netic and neutrino emission will help identify electromagnetic counterparts and maximize
the information one can learn from coincident GW and electro-magnetic observations of
astrophysical systems.

The PI’s research group has a long track record of numerical simulations of compact
object binaries to support GW astronomy. As explained in more depth in Section 5,
the waveform templates used to identify the GWs, to perform parameter estimation, and
to test general relativity are all based on computations performed at Compute Canada.
Validation-studies after the GW discoveries are also based on waveforms either computed
in Canada (see Figure 1), or are computed elsewhere with computer codes developed in
Canada.
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Waves around black holes

Yang et al. w/AZ (2012)
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Waves around black holes
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Quasinormal modes

Yang et al. w/AZ (2012)
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of a/M the rotation-induced splitting of the modes is roughly proportional to m, as
physical intuition would suggest.

The weakly damped modes of Kerr black holes In the right panel of Figure 8 we show
the first eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2
(dashed lines). A general feature is that almost all modes with m > 0 cluster at the
critical frequency for superradiance, 2Mω = m, as a/M → 1. This fact was first
observed by Detweiler [262], and a thorough examination of the extremal limit can be
found in Refs. [263, 264, 265]. The mode with n = 6 (marked by an arrow) shows a
peculiar deviation from the general trend, illustrating the fact that some positive-m
modes do not tend to this critical frequency in the extremal limit.

0.0 0.2 0.4 0.6 0.8 1.0
a/M

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
ω
lm
n

l=2
l=3
l=4

0.0 0.2 0.4 0.6 0.8 1.0
a/M

0.0

2.0

4.0

6.0

8.0

Q l
m
n

l=2

l=3

l=4

Figure 9. Frequencies and quality factors for the fundamental modes with
l = 2, 3, 4 and different values of m. Solid lines refer to m = l, .., l (from
top to bottom), the dotted line to m = 0, and dashed lines refer to m = −1, ..,−l
(from top to bottom). Quality factors for the higher overtones are lower than the
ones we display here.

For gravitational wave detection we are mostly interested in the frequency and
quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 ≃ 1.5251− 1.1568 b̂0.1292 , Q22 ≃ 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 ≃ 0.4437− 0.0739 b̂0.3350 , Q20 ≃ 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued

Modes of rotating black holes
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quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 ≃ 1.5251− 1.1568 b̂0.1292 , Q22 ≃ 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 ≃ 0.4437− 0.0739 b̂0.3350 , Q20 ≃ 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued

Q = !⌧/2

Berti,Cardoso, Starinets (2009)

• Orbits split with inclination 
• Modes split 
• Slower decay with higher 
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Yang et al. w/AZ (2012)
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Modes of rapidly rotating BHs

• Black holes spins have 
a theoretical max 

• Near maximum spin, 
new approx

⌦H

Teukolsky and Press (1974), Detweiler (1980), Hod (2008),  
Yang et al w/ AZ (2012), Yang, AZ et al. (2013a, 2013b)

Slow decay!
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Collective oscillation of modes
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Yang, AZ et al. (2013b)
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Near-horizon response

31Gralla, AZ, P Zimmerman (2016)
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Ringdown of black holes

• Unique probe of BHs, 
tests of GR 

• Weak signals, combine 
many observations 

• Rapidly rotating BHs: 
collective oscillations  

• Transient instabilities 
• Nonlinear ringdown: 

resonances, turbulence
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GW ASTRONOMY: THE SECOND 
OBSERVING RUN
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GW170104: A distant BH binary
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After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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III PARAMETER INFERENCE

FIG. 3. A Mollweide projection of the posterior probability
density for the location of the source in equatorial coordinates
(right ascension is measured in hours and declination is mea-
sured in degrees). The location broadly follows an annulus
corresponding to a time delay of ⇠ 3.0+0.4

�0.5 ms between the
Hanford and Livingston observatories. We estimate that the
area of the 90% credible region is ⇠ 1200 deg2.

FIG. 4. Posterior probability density for the source luminos-
ity distance DL and the binary inclination ✓JN . The one-
dimensional distributions include the posteriors for the two
waveform models, and their average (black). The dashed lines
mark the 90% credible interval for the average posterior. The
two-dimensional plot shows the 50% and 90% credible regions
plotted over the posterior density function.

values because of the greater preference for spins with
components antialigned with the orbital angular momen-
tum.

The final calibration uncertainty is su�ciently small
to not significantly a↵ect results. To check the impact
of calibration uncertainty, we repeated the analysis using
the e↵ective-precession waveform without marginalising

FIG. 5. Posterior probability densities for the e↵ective in-
spiral spin �e↵ for GW170104, GW150914, LVT151012 and
GW151226 [13], together with the prior probability distri-
bution for GW170104. The distribution for GW170104 uses
both precessing waveform models, but, for ease of compari-
son, the others use only the e↵ective-precession model. The
prior distributions vary between events, as a consequence of
di↵erent mass ranges, but the di↵erence is negligible on the
scale plotted.

FIG. 6. Posterior probability density for the final black hole
mass Mf and spin magnitude af . The one-dimensional dis-
tributions include the posteriors for the two waveform mod-
els, and their average (black). The dashed lines mark the
90% credible interval for the average posterior. The two-
dimensional plot shows the 50% and 90% credible regions
plotted over the posterior density function.
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onto the three detectors. As an illustration, we perform a
test comparing the tensor-only mode with scalar-only and
vector-only modes. We find that purely tensor polarization
is strongly favored over purely scalar or vector polar-
izations. With this, and additional tests, we find that
GW170814 is consistent with GR.

II. DETECTORS

LIGOoperates two 4 km long detectors in the U.S., one in
Livingston, LA and one in Hanford, WA [14], while Virgo
consists of a single 3 km long detector near Pisa, Italy [15].
Together with GEO600 located near Hanover, Germany
[16], several science runs of the initial-era gravitational-
wave networkwere conducted through 2011. LIGO stopped
observing in 2010 for the Advanced LIGO upgrade [1]. The
Advanced LIGOdetectors have been operational since 2015
[17]. They underwent a series of upgrades between the first
and second observation runs [4], and began observing again
in November 2016.

Virgo stopped observing in 2011 for the Advanced Virgo
upgrade, during which many parts of the detector were
replaced or improved [6]. Among the main changes are an
increase of the finesse of the arm cavities, the use of heavier
test mass mirrors that have lower absorption and better
surface quality [18]. To reduce the impact of the coating
thermal noise [19], the size of the beam in the central part of
the detectorwas doubled,which requiredmodifications of the
vacuum system and the input-output optics [20,21]. The
recycling cavities are kept marginally stable as in the initial
Virgo configuration. The optical benches supporting themain
readout photodiodes have been suspended and put under
vacuum to reduce the impact of scattered light and acoustic
noise. Cryogenic traps have been installed to improve the
vacuum level. The vibration isolation and suspension system,
already compliant with the Advanced Virgo requirement
[22,23], has been further improved to allow for a more robust
control of the last-stage pendulum and the accommodation of
baffles to mitigate the effect of scattered light. The test mass

FIG. 1. The GWevent GW170814 observed by LIGO Hanford, LIGO Livingston, and Virgo. Times are shown from August 14, 2017,
10∶30:43 UTC. Top row: SNR time series produced in low latency and used by the low-latency localization pipeline on August 14, 2017.
The time series were produced by time shifting the best-match template from the online analysis and computing the integrated SNR at
each point in time. The single-detector SNRs in Hanford, Livingston, and Virgo are 7.3, 13.7, and 4.4, respectively. Second row: Time-
frequency representation of the strain data around the time of GW170814. Bottom row: Time-domain detector data (in color), and
90% confidence intervals for waveforms reconstructed from a morphology-independent wavelet analysis [13] (light gray) and BBH
models described in Sec. V (dark gray), whitened by each instrument’s noise amplitude spectral density between 20 Hz and 1024 Hz.
For this figure the data were also low passed with a 380 Hz cutoff to eliminate out-of-band noise. The whitening emphasizes different
frequency bands for each detector, which is why the reconstructed waveform amplitude evolution looks different in each column. The
left ordinate axes are normalized such that the physical strain of the wave form is accurate at 130 Hz. The right ordinate axes are in units
of whitened strain, divided by the square root of the effective bandwidth (360 Hz), resulting in units of noise standard deviations.
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GW170817: Something new
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Credit: Alex Nitz/Max Planck Institute for Gravitational Physics/LIGO LVC w/ AZ PRL 119, 161101 (2017)



Component masses
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Nuclear physics with GW170817

40
LVC w/ AZ PRL 119, 161101 (2017)

Eij
⇤



1250

1500

1750

2000

2250

2500

E
ve

nt
ra

te
(c

ou
nt

s/
s)

Merge
r

GRB star
t

Lightcurve from Fermi/GBM (10 � 50 keV)

750

1000

1250

1500

1750

E
ve

nt
ra

te
(c

ou
nt

s/
s) Lightcurve from Fermi/GBM (50 � 300 keV)

112500

115000

117500

120000

E
ve

nt
ra

te
(c

ou
nt

s/
s) Lightcurve from INTEGRAL/SPI-ACS

(> 100 keV)

�10 �8 �6 �4 �2 0 2 4 6
Time from merger (s)

100

50

200

300

400

F
re

qu
en

cy
(H

z)

Gravitational-wave time-frequency map

Electromagnetic counterpart

41LVC and EM partners w/ AZ

ApJ Lett 848, L12 (2017)

LVC and Fermi/INTEGRAL w/ AZ 

ApJ Lett 848, L13 (2017)



42



Summary
• Sources for GW astronomy: a new window on 

the universe 
• Two-body problem 
• Intersection of analytic theory and sims 

• Black hole ringdown 
• Probes nature of BHs, tests of GR 

• GW astronomy: second observational run 
• Tests of GR, nuclear physics, cosmology 
• Binary parameters reveal lives and deaths 

of stars
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