Coulomb's Law $\vec{F}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad$ Electric field $\quad \vec{E} \equiv \frac{\vec{F}}{q_{0}} \quad$ Gauss Law $\quad \Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i n}}{\varepsilon_{0}}$
Electric potential energy and potential $-\Delta U=U_{A}-U_{B}=\int_{A}^{B} q_{0} \vec{E} \cdot d \vec{s}, \quad V=\frac{U_{E}}{q}$
Capacitance and Capacitor $\quad C \equiv \frac{Q}{\Delta V} \quad C=\varepsilon_{0} \frac{A}{d} \quad U_{E}=\frac{Q^{2}}{2 C}=\frac{1}{2} C(\Delta V)^{2}$

$$
C_{e q}=C_{1}+C_{2}+\ldots, \quad \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots
$$

Resistance, resistors and circuits $I \equiv \frac{d q}{d t}, \quad R=\frac{\Delta V}{I}, \quad R=\rho \frac{l}{A}, \quad \rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$

$$
\begin{aligned}
& R_{e q}=R_{1}+R_{2}+\ldots, \quad \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \\
& P=\Delta V \cdot I=I^{2} R=\frac{(\Delta V)^{2}}{R}
\end{aligned}
$$

Kirchhoff's rules $\sum_{\text {junction }} I=0, \sum_{\text {closed loop }} \Delta V=0$
Bio-Savart's Law $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s}}{r^{2}} \times \hat{r} \quad$ Ampere's Law $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I$
Magnetic field generated by a straight long wire with current i : $\vec{B}=\frac{\mu_{0} i}{2 \pi r}$
The Lorentz force $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B} \quad$ Force on a wire with current $i: \vec{F}=i \vec{L} \times \vec{B}$
Faraday's Law of induction $\mathrm{emf}=-\frac{d \Phi_{B}}{d t} \quad$ Inductance L : induced emf $\equiv-L \frac{d I}{d t}$
RLC in an AC circuit $e m f=V_{m} \sin (\omega t), \quad i=e m f / Z$

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}, X_{L}=\omega L, X_{C}=1 / \omega C, \tan \phi=\frac{X_{L}-X_{C}}{R}
$$

Laws of reflection and refraction: $\quad \theta^{\prime}=\theta, \quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Formulas in geometric optics: $f= \pm \frac{|R|}{2}, \quad \frac{1}{f}=\left(\frac{n_{\text {lens }}}{n_{\text {medium }}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$$
\frac{1}{p}+\frac{1}{i}=\frac{1}{f}, \quad M \equiv \frac{H_{I}}{H_{o}}=-\frac{i}{p}
$$

Young's double slits: maximum intensity: $d \sin \theta=m \lambda$, for $m=0,1,2, \ldots$

$$
\text { minimum intensity: } \quad d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, \text { for } m=0,1,2, \ldots
$$

Reflection phase shift: $1 / 2$ wavelength when reflecting off higher index material
This film interference: maximum intensity: $2 L=(m+$ reflection phase shifts $) \lambda / n$, for $m=0,1,2, \ldots$
minimum intensity: $2 L=(m+1 / 2+$ reflection phase shifts $) \lambda / n$, for $m=0,1,2, \ldots$

Constants: $\quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}, \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$.

