Reviews

In the figure $\varepsilon_{1}=6 \mathrm{~V}, \varepsilon_{2}=12 \mathrm{~V}, R_{1}=90 \Omega, R_{2}=210 \Omega$, and $R_{3}=300 \Omega$. One point of the circuit is grounded $(V=0)$. What is the power output from either battery?

In the figure $V=10 \mathrm{~V}, C_{1}=10 \mu \mathrm{~F}$, and $C_{2}=C_{3}=5 \mu \mathrm{~F}$. Switch S is first thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. When equilibrium is reached, how much charge is on capacitor 2 ?

Reviews

In the figure $V=10 \mathrm{~V}, C_{1}=10 \mu \mathrm{~F}$, and $C_{2}=C_{3}=5 \mu \mathrm{~F} . R=10 \Omega$. Switch S is first thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. When equilibrium is reached, how much charge is on capacitor 2 ?

Reviews

An electron e is constrained to the central perpendicular axis of a ring of charge of radius $R=2.0 \mathrm{~m}$ and charge $Q=0.1 \mathrm{mC}$. Suppose the electron is released from rest a distance $z_{0}=0.04 \mathrm{~m}$ from the ring center. It then oscillates through the ring center. Calculate its period under the condition that $z_{0} \ll R$.

Reviews

An electron e is constrained to the central perpendicular axis of a ring of charge of radius $R=2.0 \mathrm{~m}$ and charge $Q=0.1 \mathrm{mC}$. Suppose the electron is released from rest a distance $z_{0}=0.04 \mathrm{~m}$ from the ring center. It then oscillates through the ring center. Calculate its period under the condition that $z_{0} \ll R$.

$$
\begin{aligned}
& E_{z}=\oint_{\text {fuluiricle }} k_{e} \frac{z d q}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}=\frac{k_{e} z}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}} \oint_{\text {fulucircle }} d q \\
& =\frac{k_{e} z Q}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}} \cong \frac{k_{e} Q}{R^{3}} z, \text { when } z_{0} \ll R \\
& F_{e}=-e E_{z}=-\frac{k_{e} e Q}{R^{3}} z \equiv-k z \\
& \omega_{0}=\sqrt{\frac{k}{m_{e}}}=\sqrt{\frac{k_{e} e Q}{m_{e} R^{3}}} \\
& T=\frac{2 \pi}{\omega_{0}}=2 \pi R \sqrt{\frac{m_{e} R}{k_{e} e Q}}
\end{aligned}
$$

Reviews

A plastic disk of radius $R=80 \mathrm{~cm}$ is charged on one side with a uniform surface charge density $8.0 \mathrm{fC} / \mathrm{m}^{2}$, and then three quadrants of the disk are removed. The remaining quadrant is shown in the figure. With $V=0$ at infinity, what is the potential in volts due to the remaining quadrant at point P, which is on the central axis of the original disk at distance $D=0.8 \mathrm{~cm}$ from the original center?

Reviews

A plastic disk of radius $R=80 \mathrm{~cm}$ is charged on one side with a uniform surface charge density $8.0 \mathrm{fC} / \mathrm{m}^{2}$, and then three quadrants of the disk are removed. The remaining quadrant is shown in the figure. With $V=0$ at infinity, what is the potential in volts due to the remaining quadrant at point P, which is on the central axis of the original disk at distance $D=0.8 \mathrm{~cm}$ from the original center?

$$
\begin{aligned}
& \text { For full disk } V=\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{\left(R^{2}+D^{2}\right)}-D\right] \\
& \text { For } 1 / 4 \text { disk } V=\frac{\sigma}{8 \varepsilon_{0}}\left[\sqrt{\left(R^{2}+D^{2}\right)}-D\right]
\end{aligned}
$$

Reviews

A disk has a radius R and surface charge density of σ. What is the electric field at a point P along the perpendicular central axis of the disk? What the answer will be when $R \gg x$?

Reviews

A disk has a radius R and surface charge density of σ. What is the electric field at a point P along the perpendicular central axis of the disk? What the answer will be when $R \gg x$?

$d V=k_{e} \frac{d q}{\sqrt{r^{2}+x^{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma(2 \pi r) d r}{\sqrt{r^{2}+x^{2}}}=\frac{\sigma}{4 \varepsilon_{0}} \frac{d\left(r^{2}+x^{2}\right)}{\sqrt{r^{2}+x^{2}}}$
$V=\int_{0}^{R} \frac{\sigma}{4 \varepsilon_{0}} \frac{d\left(r^{2}+x^{2}\right)}{\sqrt{r^{2}+x^{2}}}=\left.\frac{\sigma}{4 \varepsilon_{0}} \frac{\left(r^{2}+x^{2}\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right|_{0} ^{R}=\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{\left(R^{2}+x^{2}\right)}-x\right]$
$E_{x}=-\frac{d V}{d x}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{x}{\sqrt{R^{2}+x^{2}}}\right)$

$$
E_{x} \rightarrow \frac{\sigma}{2 \varepsilon_{0}} \quad \begin{aligned}
& \text { Compare with } \\
& \begin{array}{l}
\text { Gauss Law } \\
\text { type } 3
\end{array}
\end{aligned}
$$

