In the figure $\varepsilon_1 = 6 \text{ V}$, $\varepsilon_2 = 12 \text{ V}$, $R_1 = 90 \Omega$, $R_2 = 210 \Omega$, and $R_3 = 300 \Omega$. One point of the circuit is grounded (V = 0). What is the power output from either battery?

In the figure V = 10 V, $C_1 = 10$ μ F, and $C_2 = C_3 = 5$ μ F. Switch S is first thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. When equilibrium is reached, how much charge is on capacitor 2?

In the figure V = 10 V, $C_1 = 10$ µF, and $C_2 = C_3 = 5$ µF. $R = 10 \Omega$. Switch S is first thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. When equilibrium is reached, how much charge is on capacitor 2?

An electron *e* is constrained to the central perpendicular axis of a ring of charge of radius R = 2.0 m and charge Q = 0.1 mC. Suppose the electron is released from rest a distance $z_0 = 0.04$ m from the ring center. It then oscillates through the ring center. Calculate its period under the condition that $z_0 << R$.

An electron *e* is constrained to the central perpendicular axis of a ring of charge of radius R = 2.0 m and charge Q = 0.1 mC. Suppose the electron is released from rest a distance $z_0 = 0.04$ m from the ring center. It then oscillates through the ring center. Calculate its period under the condition that $z_0 << R$.

A plastic disk of radius R = 80 cm is charged on one side with a uniform surface charge density 8.0 fC/m², and then three quadrants of the disk are removed. The remaining quadrant is shown in the figure. With V = 0 at infinity, what is the potential in volts due to the remaining quadrant at point P, which is on the central axis of the original disk at distance D = 0.8 cm from the original center?

A plastic disk of radius R = 80 cm is charged on one side with a uniform surface charge density 8.0 fC/m², and then three quadrants of the disk are removed. The remaining quadrant is shown in the figure. With V = 0 at infinity, what is the potential in volts due to the remaining quadrant at point P, which is on the central axis of the original disk at distance D = 0.8 cm from the original center?

For full disk
$$V = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{\left(R^2 + D^2\right)} - D \right]$$

For 1/4 disk $V = \frac{\sigma}{8\varepsilon_0} \left[\sqrt{\left(R^2 + D^2\right)} - D \right]$

A disk has a radius *R* and surface charge density of σ . What is the electric field at a point P along the perpendicular central axis of the disk? What the answer will be when R >>x?

A disk has a radius *R* and surface charge density of σ . What is the electric field at a point P along the perpendicular central axis of the disk? What the answer will be when R >> x?

3