# **Electric Charge**

- 1. Electric charge.
- 2. Coulomb's Law about force between two point charges.
- 3. Application of Coulomb's Law.

## **Electric Charges**

#### • There are two kinds of electric charges

- Negative charges are the type possessed by electrons
- Positive charges are the type possessed by protons
- For example, a hydrogen atom has a proton and an electron. The force between them bound them into an atom.

#### • There are forces between electric charges:

- Like-sign charges repel one another.
- Unlike-sign charges attract one another.

## One Way to "Generate" Electric Charge



- The rubber rod is negatively charged
- The glass rod is positively charged
- The two rods attract



- The rubber rod is negatively charged
- The second rubber rod is also negatively charged
- The two rods repel

#### Electric charge is always conserved in an isolated system: Charge is not created in the process of rubbing two objects together. The electrification is due to a transfer of charge from one object to another

### **Conservation of Electric Charges**

- A glass rod is rubbed with silk
- Electrons are transferred from the glass to the silk
- Each electron adds a negative charge to the silk
- An equal positive charge is left on the rod



©2004 Thomson - Brooks/Cole

How electrical charges are measured? How do the electrical charges move?

## **Quantization of Electric Charges**

• The electric charge, q, is said to be quantized.

(Which experiment first demonstrated this fact in history?)

- *q* is the standard symbol used for charge as a variable
- Electric charge exists as discrete packets
- $q = \pm Ne$ 
  - *N* is an integer
  - *e* is the fundamental unit of charge
  - |e| = 1.6 x 10<sup>-19</sup> C (C, or Coulomb, is the unit of electrical charge in the SI unit system)
  - Electron: q = -e
  - Proton: q = +e

How do the electrical charges move?

### **Conductors and Insulators**

- Electrical conductors are materials in which some of the electrons are free electrons
  - These electrons can move relatively freely through the material
  - Examples of good conductors include copper, aluminum and silver
  - When a good conductor is charged in a small region, the charge readily distributes itself over the entire surface of the material

- Electrical insulators are materials in which all of the electrons are bound to atoms
  - These electrons can not move relatively freely through the material
  - Examples of good insulators include glass, rubber and wood
  - When a good insulator is charged in a small region, the charge is unable to move to other regions of the material

- The electrical properties of semiconductors are somewhere between those of insulators and conductors
- Examples of semiconductor materials include silicon and germanium

### Induction. Another way to generate charge

- Charging by induction requires no contact with the object inducing the charge.
- Instead we make use of the forces between charges to obtain charged object.



Repel and attract forces re-arrange charges in sphere.

Ground to remove negative charge.

Remove the grounding wire. The sphere is left with an excess of positive charge.

#### Can you charging an insulator by the same process?

## **Charge Rearrangement in Insulators**

- A process similar to induction can take place in insulators.
- The charges within the molecules of the material are rearranged.
- But you cannot remove charges from the insulator to have it charged up.



The force between charges cause induction in conductor and polarization (charge re-arrangement) in insulator. How is this force quantified?

### The Force Between Two Point Charges Follows Coulomb's Law

- The electrical force between two point charges is given by Coulomb's Law.
- The magnitude of the force is proportional to the product of the charges,  $q_1$  and  $q_2$ ; and inversely proportional to the square of the separation *r* between them.



1736 – 1806 French physicist

- The direction of the force is along the line joining the two points:
  - The force is attractive if the charges are of opposite sign
  - The force is repulsive if the charges are of like sign
- The force is a conservative force.

What is a conservative force? Have you met such a type of force in Mechanics?

### **Coulomb's Law, Equation**

• Mathematically:

$$F_e = K_e \frac{|q_1||q_2|}{r^2}$$
 or  $\vec{F}_e = K_e \frac{q_1 q_2}{r^2} \hat{r}_{12}$ 

- The SI unit of charge is the coulomb (C)
- $k_e$  is called the **Coulomb constant** 
  - $k_e = 8.9876 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 = 1/(4\pi\varepsilon_0)$
  - $\varepsilon_0$  is the **permittivity of free space**
  - $\varepsilon_0 = 8.8542 \text{ x } 10^{-12} \text{ C}^2 / \text{ N} \cdot \text{m}^2$



Anyone remembers Newton's Law of gravitational force between two point masses?

### How to get the order of magnitude right?

How positive and negative charges I have in my body?

### where to place $q_3$ so the force on it is zero?

- Where is the resultant force equal to zero?
  - The magnitudes of the individual forces will be equal
  - Directions will be opposite



### The force on $q_3$ ?

- The force exerted by  $q_1$ on  $q_3$  is  $\vec{\mathbf{F}}_{13}$
- The force exerted by  $q_2$ on  $q_3$  is  $\vec{\mathbf{F}}_{23}$
- The resultant force exerted on  $q_3$  is the vector sum of  $\vec{\mathbf{F}}_{13}$  and  $\vec{\mathbf{F}}_{23}$



### **Electrical Force with Other Forces.**

The spheres (mass m) are in equilibrium.
Find out the magnitude of the charge q.



- Since they are like charges, they exert a repulsive force  $\vec{F}_e$  on each other.
- Proceed as usual with equilibrium problems, noting one force is an electrical force

#### Another example on estimate

- What is the speed of an electron in a hydrogen atom in its ground state?
  - Assume classic mechanics
  - The atomic radius if a hydrogen atom is about 0.5 angstrom or  $5 \times 10^{-11}$  meter.



#### Think before act

 One proton is placed at the center of a ring with a radius of 1 meter. Seventy one protons are added to the ring at 5 degree intervals. What is the force the proton at the center experiences?



### **Reading material and Homework assignment**

Please watch this video (48 minutes): http://videolectures.net/mit802s02\_lewin\_lec01/

Please check wileyplus webpage for homework assignment.