Electric Potential

1. Electric potential energy U
2. Electric potential V
3. Electric potential V and field E

Review math

Addition and subtraction: if $A+B=C \rightarrow B=C-A$ Multiplication and division: if $A B=C \rightarrow B=C / A$

Differentiate and Integrate: if $z(x)=\frac{d y(x)}{d x} \rightarrow y=\int d y=\int z(x) d x$ $\int_{A}^{B} \frac{1}{x^{2}} \cdot d x=-\left.\frac{1}{x}\right|_{A} ^{B}=\frac{1}{A}-\frac{1}{B}$
If $\vec{u}(\vec{r})=\hat{x} \frac{\partial v(\vec{r})}{\partial x}+\hat{y} \frac{\partial v(\vec{r})}{\partial y}+\hat{z} \frac{\partial v(\vec{r})}{\partial z} \equiv \nabla u(\hat{r})$, here $\nabla \equiv \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$
$\rightarrow v(\vec{r})=\int_{\text {line integral }} \vec{u}(\vec{r}) d \vec{s} \quad$ In a Cartesian coordinate system

When object of mass m is on the ground level B, we define that it has zero gravitational potential energy. When we let go of this object, if will stay in place.

A review of gravitational potential

Move the object to elevation A, it has now has gravitational potential energy $m g h$. When we let go of this object, if will fall back to level B , converting the potential energy to kinetic.
The object has gravitational potential energy $U_{A}-U_{B}=m g h$ at elevation A. U_{A} is the potential energy at point A with reference to point B. When the object falls from level A to level B, the potential energy change is: $\Delta U=U_{B}-U_{A}$ The gravitational force does work to causes the potential energy change:

$$
\mathrm{W}=m g h=U_{A}-U_{B}=-\Delta U
$$

Gravitational force is conservative.

Electric potential energy, a special case: the
 electric field is constant

When a charge q_{0} is placed inside an electric field, it experiences a force from the field:

$$
\vec{F}=q_{0} \vec{E}
$$

When the charge is released, the field moves it from A to B , doing work:

$$
W=\vec{F} \cdot \vec{d}=q_{0} \vec{E} \cdot \vec{d}=q_{0} E d
$$

If we define the electric potential energy of the charge at point A as U_{A} and at point B as U_{B}, then:

$$
W=q_{0} E d=U_{A}-U_{B}=-\Delta U
$$

If we define $U_{B}=0$, then $U_{A}=q_{\theta} E d$ is the electric potential energy the charge has at point A. We can also say that the electric field has an electric potential at point A. When a charge is placed there, the charge
 acquires an electric potential energy that is the charge times this potential.

Electric Potential Energy, the general case

When a charge is moved from point A to point B in an electric field, the charge's electric potential energy inside this field is changed from U_{A} to $U_{\mathrm{B}}: \Delta U=U_{B}-U_{A}$

When the motion is caused by the electric field force on the charge, this force does work to the charge and causes a change of its electric potential energy: $W=-\Delta U$ The force on the charge is: $\vec{F}=q_{0} \vec{E}$

So we have this final formula for electric potential energy and the work the field force does to the charge:

$$
-\Delta U=U_{A}-U_{B}=W(\text { of the field force })=\int_{A}^{B} q_{0} \vec{E} \cdot d \vec{s}
$$

Electric Potential Energy

Electric force is conservative. The line integral does not depend on the path from A to B; it only depends on the locations of A and B.

$$
-\Delta U=U_{A}-U_{B}=\int_{A}^{B} q_{0} \vec{E} \cdot d \vec{s}
$$

Line integral paths

The path is from A to B, and

$$
\Delta U \equiv U_{B}-U_{A}
$$

The electric potential energy of charge q_{0} in the field of charge Q ?

Reference point:
We normally define the electric potential of a point charge to be zero (reference) at a point that is infinitely far away from this point charge.

Applying this formula:

$$
-\Delta U=U_{A}-U_{B}=\int_{A}^{B} q_{0} \vec{E} \cdot d \vec{s}
$$

Where point A is where the charge q_{0} is, point B is
 infinitely far away.

$$
\begin{aligned}
& \vec{E}=k_{e} \frac{Q}{r^{2}} \hat{r}, \quad d \vec{s}=d \vec{r} \\
& \text { so } \quad \vec{E} \cdot d \vec{s}=\vec{E} \cdot d \vec{r}=k_{e} \frac{Q}{r^{2}} d r \\
& \text { and } \int_{R}^{\infty} k_{e} \frac{Q}{r^{2}} d r=k_{e} \frac{Q}{R}
\end{aligned}
$$

So the final answer is

$$
U(R)=k_{e} \frac{q_{0} Q}{R}
$$

And the result is a scalar!

Electric Potential, the definition

- The potential energy per unit charge, U / q_{0}, is the electric potential
- The potential is a characteristic of the field only
- The potential energy is a characteristic of the charge-field system
- The potential is independent of the value of q_{0}
- The electric potential is $V=\frac{U}{q_{0}}$
- As in the potential energy case, electric potential also needs a reference. So it is the potential difference ΔV that matters, not the potential itself, unless a reference is specified (then it is again ΔV).

Electric Potential and electric field

- The potential is a scalar quantity
- Since energy is a scalar
- Potential difference between V_{A} and V_{B} is calculated using:

$$
-\Delta V=V_{A}-V_{B}(\text { often the reference })=\int_{A}^{B} \vec{E} \cdot d \vec{s}
$$

Remember that path is from A to B and the potential difference is defined to be:

$$
\Delta V \equiv V_{B}-V_{A}
$$

Potential Difference in a Uniform Field

The equations for electric potential can be simplified if the electric field is uniform:

$$
-\Delta V=V_{A}-V_{B}=\int_{A}^{B} \vec{E} \cdot d \vec{s}=\vec{E} \int_{A}^{B} d \vec{s}=\vec{E} \cdot \vec{d}
$$

When:
$\vec{E} \cdot \vec{d}>0$, i.e., \vec{E} and \vec{d} the same direction,

$$
-\Delta V=V_{A}-V_{B}>0, \text { or } V_{A}>V_{B}
$$

This is to say that electric field lines always point in the direction of decreasing electric $\overrightarrow{\mathbf{E}}$ potential. Electric potential decreases down the field line.

Electric Potential, Electric Potential Energy and Work

When there is electric field, there is electric potential V.
When a charge q_{0} is in an electric field, this charge has an electric potential energy U in this electric field:

$$
U=q_{0} V .
$$

When this charge q_{0} is moved by the electric field force from point A to point B, the work this field force does to this charge equals the negative potential energy change $-\Delta U=-\left(U_{B}-U_{A}\right)$:

$$
W=-\Delta U=-q_{0} \Delta V .
$$

Understand the Units

- The unit for electric potential energy is the unit for energy joule (J).
- The unit for electric potential is volt (V):

1 Volt = 1 Joule/Coulomb or $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$

- This unit comes from $U=q_{0} V$ (here U is electric potential energy, V is electric potential, not the unit volt)
- It takes one joule of work to move a 1-coulomb charge through a potential difference of 1 volt
- But from $-\Delta V=\int_{A}^{B} \vec{E} \cdot d \vec{s}$

We also have the unit for electric potential as $1 \mathrm{~V}=1$ (N/C)m
So we have that $1 \mathrm{~N} / \mathrm{C}$ (the unit of \vec{E}) $=1 \mathrm{~V} / \mathrm{m}$

- This indicates that we can interpret the electric field as a measure of the rate of change with position of the electric potential

Electron-Volts, another unit often used in nuclear and particle physics

- Another unit of energy that is commonly used in atomic and nuclear physics is the electron-volt
- One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt
- $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Direction of Electric Field, energy

conservation

- As pointed out before, electric field lines always point in the direction of decreasing electric potential
- So when the electric field is directed downward, point B is at a lower potential than point A
- When a positive test charge moves from A to B, the charge-field system loses potential energy through doing work to this charge
- Where does this energy go?

Direction of Electric Field, energy
 conservation

- As pointed out before, electric field lines always point in the direction of decreasing electric potential
- So when the electric field is directed downward, point B is at a lower potential than point A
- When a positive test charge moves from A to B, the charge-field system loses potential energy through doing work to this charge
- Where does this energy go?

It turns into the kinetic energy of the object (with a mass) that carries the charge q_{0}.

Equipotentials = equal potentials

- Points B and C are at a lower potential than point A
- Points B and C are at the same potential
- All points in a plane perpendicular to a uniform electric field are at the same electric potential
- The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential

Charged Particle in a Uniform Field, Example

Question: a positive charge q (mass m) is released from rest and moves in the direction of the electric field. Find its speed at point B.

Solution: The system loses potential energy: $-\Delta U=U_{A}-U_{B}=q E d$

The force and acceleration are in the direction of the field

Use energy conservation to find its speed:

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=q E d \\
& v=\sqrt{\frac{2 q E d}{m}}
\end{aligned}
$$

Potential and Point Charges

- A positive point charge q produces a field directed radially outward
- The potential difference between points A and B will be

$$
\Delta V \equiv V_{B}-V_{A}=k_{e} q\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
$$

No line integral needed!
And this is because?

Potential and Point Charges

- The electric potential is independent of the path between points A and B
- It is customary to choose a reference potential of $V=0$ at $r_{\mathrm{A}}=\infty$
- Then the potential at some point r is

$$
V(r)=k_{e} \frac{q}{r}
$$

What happens to the potential when $r \rightarrow 0$?

Electric Potential of a Point Charge

- The electric potential in the plane around a single point charge is shown
- The red line shows the $1 / r$ nature of the potential

Electric Potential with Multiple Charges

- The electric potential due to several point charges is the sum of the potentials due to each individual charge
- This is another example of the superposition principle
- The sum is the algebraic sum

$$
V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}}
$$

Immediate application: Electric Potential of a Dipole

$$
V=V_{+}+V_{-}=k_{e} q\left(\frac{1}{\left|\vec{r}-\vec{r}_{+}\right|}-\frac{1}{\left|\vec{r}-\vec{r}_{-}\right|}\right)
$$

Work on the board to prove it.

- The graph shows the potential (y-axis) of an electric dipole
- The steep slope between the charges represents the strong electric field in this region

Potential Energy of Multiple Charges

- The potential energy of two
system is $U=k_{e} \frac{q_{1} q_{2}}{r_{12}}$
because $V(r)=k_{e} \frac{q}{r}$ and $U=q V$
- For a three charge system:

$$
U=k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{2} q_{3}}{r_{23}}+\frac{q_{3} q_{1}}{r_{31}}\right)
$$

For an N charge system?

$$
U=\frac{k_{e}}{2} \sum_{i, j}^{N} \frac{q_{i} q_{j}}{} \frac{q_{i}}{r_{i j}}
$$

Work and Potential Energy in a two

 charge system- If the two charges are the same sign, U is positive and external work (not the one from the field force) must be done to bring the charges together
- If the two charges have opposite signs, U is negative and external work is needed to separate the charges

Find V for an Infinite Sheet of Charge

- We know that $E=\frac{\sigma}{2 \varepsilon_{0}}$, a constant
- From $V=\int \vec{E} \cdot d \vec{s}$

We have $V=E d$

- The equipotential lines are the dashed blue lines
- The electric field lines are the brown lines
- The equipotential lines are
 everywhere perpendicular to the field lines

Finding \vec{E} From V

This is straight forward (if you are good in math):
From $-\Delta V=\int \vec{E} \cdot d \vec{s}$
we have $\vec{E}=-\nabla V \equiv\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) V$
If \vec{E} is one dimensional (say along the x-axis) $E_{x}=-\frac{d V}{d x}$
If \vec{E} is only a function of \vec{r} (the point charge case):

$$
\vec{E}(\vec{r})=E(r) \hat{r} \quad \text { with } \quad E(r)=-\frac{d V}{d r}
$$

- Consider a small charge element $d q$
- Treat it as a point charge
- The potential at some point due to this charge element is

$$
\begin{aligned}
& d V=k_{e} \frac{d q}{r} \\
& V=\int d V
\end{aligned}
$$

V for a Uniformly Charged Ring

- P is located on the perpendicular central axis of the uniformly charged ring
- The ring has a radius a and a total charge Q

$$
V=k_{e} \int \frac{d q}{r}=\frac{k_{e} Q}{\sqrt{x^{2}+a^{2}}}
$$

- A function of x, so

$$
E=-\frac{d V}{d x}=-\frac{d}{d x}\left(\frac{k_{e} Q}{\sqrt{a^{2}+x^{2}}}\right)=k_{e} \frac{Q x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}
$$

Compare the calculation in Chapter 22

V for a Uniformly Charged Disk

- The ring has a radius R and surface charge density of σ
- P is along the perpendicular central axis of the disk
$d V=k_{e} \frac{d q}{\sqrt{r^{2}+x^{2}}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma(2 \pi r) d r}{\sqrt{r^{2}+x^{2}}}=\frac{\sigma}{4 \varepsilon_{0}} \frac{d\left(r^{2}+x^{2}\right)}{\sqrt{r^{2}+x^{2}}}$
$V=\int_{0}^{R} \frac{\sigma}{4 \varepsilon_{0}} \frac{d\left(r^{2}+x^{2}\right)}{\sqrt{r^{2}+x^{2}}}=\left.\frac{\sigma}{4 \varepsilon_{0}} \frac{\left(r^{2}+x^{2}\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\right|_{0} ^{R}=\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{\left(R^{2}+x^{2}\right)}-x\right]$
$E_{x}=-\frac{d V}{d x}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{x}{\sqrt{R^{2}+x^{2}}}\right)$

Compare this with the same problem in Chapter 22. And when $R \rightarrow \infty$

$$
E_{x} \rightarrow \frac{\sigma}{2 \varepsilon_{0}} \quad \begin{aligned}
& \text { Compare with } \\
& \text { Gauss Law } \\
& \text { type } 3
\end{aligned}
$$

E Compared to V

- The electric potential is a function of r
- The electric field is a function of r^{2}
- The effect of a charge on the space surrounding it:
- The charge sets up a vector electric field which is related to the force
- The charge sets up a scalar potential which is related to the energy

Reading material and Homework assignment

Please watch this video (about 50 minutes): http://videolectures.net/mit802s02 lewin lec04/

Please check wileyplus webpage for homework assignment.

