Resistance and Resistors

1. Electrical Current - moving charges.
2. Resistance (to the moving charges).
3. Resistor - the second passive component in a circuit.

Capacitance and capacitors

The relationship among charge, potential and the capability an object holds charges (capacitance) is

$$
C \equiv \frac{Q}{\Delta V}
$$

For a parallel plate capacitor, the capacitance is $C=\varepsilon_{0} \frac{A}{d}$ When capacitors connected in parallel: $C=C_{1}+C_{2}+C_{3}+\ldots$
And in series: $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots$
Energy stored in a capacitor: $U=\frac{Q^{2}}{2 C}=\frac{1}{2} C(\Delta V)^{2}$
Now adding dielectric: $C=\kappa \cdot C_{\text {VACUUM }}$

Electric Current, the definition

- Assume charges are moving perpendicularly through a surface of area A
- If ΔQ is the amount of charge that passes through A in time Δt, then the
 average current is

$$
I_{\text {avg }}=\frac{\Delta Q}{\Delta t} \quad \text { or } \quad I=\frac{d Q}{d t}
$$

Electric Current, definition and unit

- Electric current is the rate of charges flowing through some region in space. Already we need a concept of current density in space, but we will leave that to a later discussion.
- The SI unit of current is ampere (A)
- $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$
- The unit ampere is a base unit. The unit for time, second, is also a base unit. What are the base units in the SI system?
- The unit for charge is then defined as $1 \mathrm{C}=1 \mathrm{~A} * 1$ s. The unit for charge, coulomb, is not a base unit in SI .
- The symbol for electric current is I (not the " i " in iPhone)

SI base units and prefix

SI base units ${ }^{[9][10]}$

Name	Unit symbol	Quantity	Symbol
metre	\mathbf{m}	length	I (a lowercase L)
kilogram	kg	mass	m
second	s	time	t
ampere	A	electric current	I (a capital i)
kelvin	K	thermodynamic temperature	T
candela	cd	luminous intensity	I_{V} (a capital i with lowercase v subscript)
mole	mol	amount of substance	n

Standard prefixes for the SI units of measure

Multiples	Name		deca-	hecto-	kilo-	mega-	giga-	tera-	peta-	exa-	zetta-	yotta-
	Symbol		da	h	k	M	G	T	P	E	Z	Y
	Factor	10^{0}	10^{1}	10^{2}	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}	10^{21}	10^{24}
Subdivisions	Symbol		d	c	m	μ	n	p	f	a	Z	y
	Name		deci-	centi-	milli-	micro-	nano-	pico-	femto-	atto-	zepto-	yocto-
	Factor	10^{0}	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}	10^{-18}	10^{-21}	10^{-24}

Direction of Current

- The charges that pass through the area could be positive or negative or both. This area may or may not be an actual physical surface. Charges can flow in a conductor or in vacuum (like that in a vacuum tube or a cathode ray tube).

- It is conventional to assign to the current direction as the direction of the flow of positive charges
- The direction of current flow is opposite the direction of the flow of electrons, which are the charge carriers in a current in most cases.
- It is common to refer to any moving charge as a charge carrier, positive or negative. Where one has both?

Current in a conductor and the drift speed of the carrier

- Charged particles move through a conductor under the drive of an electric field inside.

Wait!
There should be no electric field inside a conductor. Explanation
 please!

- A conducting wire can be viewed as an electric field guide.
- Assume a cross-sectional area A and the number of charge carriers per unit volume n. Then $n A \Delta x$ is the total number of charge carriers in that volume.
- Define a drift speed of the charges through $\Delta x=\vec{v}_{d} \Delta t$

Motion of the electrons, in a conductor

- The actual charge carriers in conductors
 are electrons
- The zigzag black lines represents the motion of a charge carrier in a conductor
- The net drift speed is small
- The sharp changes in direction are due

- The net motion of electrons is opposite the direction of the electric field
- The current direction is conventionally defined to be the positive carrier motion direction, or the electric field direction.

Current linearly proportional to drift speed

- The total charge is the number of carriers times the charge per carrier, q
- $\Delta Q=(n A \Delta x) q$
- The drift speed, v_{d}, is the speed at which the carriers move
- $v_{d}=\Delta x / \Delta t$ and $\Delta x=v_{d} \Delta t$
- Rewrite: $\Delta Q=\left(n A v_{d} \Delta t\right) q$
- Finally, current, $I_{\text {ave }}=\Delta Q / \Delta t=n q v_{d} A$
- This is to say that current is linearly proportional to the drift speed v_{d}

A typical value of the drift speed

- Assume a copper wire, with one free electron per atom contributing to the current
- The drift speed for a 12-gauge copper wire carrying a current of 10.0 A is $2.23 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
- This is very slow, how come when a switch is closed, the light comes on immediately from a light bulb ~ 10 m away? It should have taken $\sim 10 / 2.23 \times 10^{-4}$ sec which is about 12 hours.
- What is wrong in the above reasoning?

Motion of the electrons, in a conductor

- The electric field exerts forces on the electrons in the wire at the same time (almost). These forces cause the electrons to move in the wire and create a current. So the current starts to flow anywhere in the circuit when the switch is closed.
- In the presence of an electric field, like the one set up by a battery, despite of all the collisions, the charge carriers slowly move along the conductor with a drift velocity, \vec{v}_{d}
- The battery does not only supply the electrons, it also (mainly) establishes the electric field

Current Density J, the definition

The current density J of the current I in a conductor is defined as the current per unit area:

$$
\begin{gathered}
I_{\text {ave }}=\Delta Q / \Delta t=n q v_{d} A \\
J \equiv \frac{d I}{d A} \cong \frac{I_{\text {ave }}}{A}=n q v_{d}, \quad \text { or } \vec{J}=n q \vec{v}_{d}
\end{gathered}
$$

Current density is a vector and is in the direction of the positive charge carriers
J has an SI unit of A / m^{2}
The relationship to the current is

$$
I=\int \vec{J} \cdot d \vec{A}
$$

Conductivity and resistivity

- A current density and an electric field are established in a conductor whenever a potential difference is maintained across the conductor
- For some materials, the current density is directly proportional to the field, that is

$$
\vec{J}=\sigma \vec{E}
$$

- The constant of proportionality, σ, is the conductor's conductivity
- Another often used parameter is the resistivity, ρ, is just the inverse of the conductivity: $\rho \equiv 1 / \sigma$

And this formula, $\vec{J}=\sigma \vec{E}$, is called Ohm's Law.

Ohm's Law

- Ohm's law states that the ratio of the current density to the electric field is a constant σ
- Mathematically, $J=\sigma E$
- Most metals obey Ohm's law
- Materials that obey Ohm's law are said to be ohmic

But

- Not all materials follow Ohm's law
- Materials that do not obey Ohm's law are said to be nonohmic
- Ohm's law is an empirical relationship valid only for certain materials, not a fundamental law of nature

Resistance and a more popular form of the

Ohm's Law

From Ohm's Law: $J=\sigma E$
One has: $\quad E=\frac{1}{\sigma} J=\rho J$

Now exam the section of a wire with length l and cross section A, one has:

$$
\Delta V=E l=\frac{1}{\sigma} J l=\rho J l=\rho \frac{I}{A} l=\rho \frac{l}{A} I
$$

Now we define a new parameter, the resistance of this section of the wire, R, to be:

$$
R \equiv \rho \frac{l}{A}
$$

Ohm's Law becomes

$$
\Delta V=R I \quad \text { or } R \equiv \frac{\Delta V}{I}
$$

Resistance

- In SI the unit for resistance is ohm (Ω)
- $1 \Omega=1 \mathrm{~V} / \mathrm{A}$
- The SI unit of resistivity is $\Omega \cdot \mathrm{m}$
- Resistance is proportional to the resistivity, a constant of the material, the length of the conductor (wire), and

$$
R \equiv \rho \frac{l}{A}
$$ inversely proportional to the cross section of the wire.

- Resistivity changes linearly with $\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
temperature.
- In a conductor, the voltage applied across the ends of the conductor is

$$
\Delta V=R I
$$ proportional to the current through the conductor

- The constant of proportionality is called the resistance of the conductor

$$
R \equiv \frac{\Delta V}{I}
$$

Resistivity Values and the temperature coefficient α

Resistivities and Temperature Coefficients of Resistivity for Various Materials

Material	Resistivity $(\boldsymbol{\Omega} \cdot \mathbf{m})$	Temperature Coefficient $\boldsymbol{\alpha}^{\mathbf{b}}\left[\left({ }^{\circ} \mathbf{C}\right)^{-1}\right]$
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	4.5×10^{-3}
Iron	10×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichromec	1.50×10^{-6}	0.4×10^{-3}
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}
Silicon $^{\text {d }}$	2.3×10^{3}	-75×10^{-3}
Glass	10^{10} to 10^{14}	
Hard rubber	$\sim 10^{13}$	
Sulfur	10^{15}	
Quartz (fused)	75×10^{16}	
Sis		

[^0]
Resistance and Resistors

All (almost) materials have resistance
Those that are called ohmic if Ohm's Law $R \equiv \frac{\Delta V}{I}$ holds.

In a circuit, the resistance of connecting wires (PCB copper traces) are often neglected.
A device made to have certain resistance value is call a resistor.

Ohmic or Nonohmic

- Ohmic:
- The resistance is constant over a wide range of voltages
- The relationship between current and voltage is linear
- The slope is related to the resistance
I

- Nonohmic:
- resistance changes with voltage or current
- The current-voltage relationship is nonlinear

Resistance and Temperature

- Over a limited temperature range, the resistivity of a conductor varies linearly with the temperature

$$
\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

- ρ_{0} is the resistivity at some reference temperature T 。
- T_{0} is usually taken to be $20^{\circ} \mathrm{C}$
- α is the temperature coefficient of resistivity
- With a resistor:

$$
R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

- This is often used to measure temperature with materials that have large α

Electrical Power: work done by electric field

- As a charge Q moves from a to b, the electric potential energy of the system increases by $Q \Delta V$
This energy comes from the chemical energy in the battery
- As the charge moves through the resistor (c to d), the system loses this electric potential energy, turning it to heat by the resistor
- The electric power (energy time rate) the resistor consumes is

$$
p=\frac{\text { energy }}{\text { time }}=\frac{Q \Delta V}{\Delta t}=I \Delta V, \text { as } I \equiv \frac{d Q}{d t}
$$

only with Ohm's Law, $p=I^{2} R=\frac{(\Delta V)^{2}}{R}$

Example: Electric Power Transmission

The question:
Dallas needs 100 MW electric power which is generated 100 miles away. The transmission line (aluminum) has a diameter of 2 inches. How much power must be generated to deliver 100 MW to Dallas, (a) If 110 V is used? (b) if $600,000 \mathrm{~V}$ is used?

Step 1: $p_{\text {produced }}=p_{\text {delivered }}+p_{\text {on transmission lines }}$

$$
p_{\text {delivered }}=I \cdot \Delta V, p_{\text {on transmission lines }}=I^{2} \cdot R_{\text {line }}
$$

Step 2: $R_{\text {line }}=\rho \frac{l}{A}$
$=2.82 \times 10^{-8} \frac{2 \times 100 \times 10^{3} \times 1.6}{3.14 \times\left(1 \times 25.4 \times 10^{-3}\right)^{2}} \Omega$
$=4.45 \Omega$

Example: Electric Power Transmission

Step 3: (a) $\Delta V=110 \mathrm{~V} \rightarrow I_{\text {needed for } 100 \mathrm{MW}}=\frac{p}{\Delta V}=\frac{100 \times 10^{6}}{110} \mathrm{~A}=9.1 \times 10^{5} \mathrm{~A}$

$$
p_{\text {on transmission lines }}=I^{2} \cdot R_{\text {line }}=\left(9.1 \times 10^{5}\right)^{2} \cdot 4.45 \mathrm{~W}=3.7 \times 10^{12} \mathrm{~W}
$$ transmission efficiency $=p_{\text {delivered }} / p_{\text {produced }} \approx 10^{-5} \approx 0$

(b) $\Delta V=600,000 \mathrm{~V} \rightarrow I_{\text {needed for } 100 \mathrm{MW}}=\frac{p}{\Delta V}=\frac{100 \times 10^{6}}{6 \times 10^{5}} \mathrm{~A}=1.7 \times 10^{2} \mathrm{~A}$
$p_{\text {on transmission lines }}=I^{2} \cdot R_{\text {line }}=\left(1.7 \times 10^{2}\right)^{2} \cdot 4.45 \mathrm{~W}=1.2 \times 10^{5} \mathrm{~W}$ transmission efficiency $=p_{\text {delivered }} / p_{\text {produced }}=99.9 \%$

Example: two incandescent light bulbs

In the US, the standard in our grid power system is 110 V . When two incandescent light bulbs (a pure resistive device, with light output proportional to the power consumed), with power specifications of 60 W and 100 W , are connected in parallel, which one is brighter?

Both bulbs receive the nominal voltage of 110 V . They shine as their spec: 60 W and 100 W . So the 100W bulb is brighter than the 60W.

Example: two incandescent light bulbs

Now connect them in series, which one is brighter in this case?

Now the voltage 110 V is shared by the two bulbs. The current is the same through them.
From $p=\frac{\Delta V^{2}}{R}$ One has $R=\frac{\Delta V_{\text {nominal }}^{2}}{p_{\text {nominal }}}$
Then from $p=I^{2} R$
One has $\frac{p_{b 1}}{p_{b 2}}=\frac{R_{b 1}}{R_{b 2}}=\frac{\Delta V_{\text {nominal }}^{2} / 60 \mathrm{~W}}{\Delta V_{\text {nominal }}^{2} / 100 \mathrm{~W}}=\frac{5}{3}$
So bulb b1, with 60W nominal power consumption, is brighter.

Reading material and Homework assignment

Please watch this video (about 50 minutes each): http://videolectures.net/mit802s02 lewin lec09/

Please check wileyplus webpage for homework assignment.

[^0]: ${ }^{a}$ All values at $20^{\circ} \mathrm{C}$. All elements in this table are assumed to be free of impurities.

