(DC) Circuits

1. Resistors in a circuit (serial and parallel connections).
2. The Direct Current (DC) and the Alternating Current (AC) circuits.
3. How to model a battery in a circuit.
4. Circuits with 2 or more batteries Kirchhoff's Rules
5. The $R C$ circuit (your low- or high- pass filter in EE, and the drive in MOS transistors): when we have R and C together.

The current is defined as: $I=\frac{d Q}{d t}$
Its unit is ampere (A), a base unit in the SI system.
Its relationship with the current density J is:

$$
I=\int \vec{J} \cdot d \vec{A} \quad \text { or: } \quad J \equiv d I / d A
$$

Ohm's Law: $\vec{J}=\sigma \vec{E}$

Here σ is the conductivity of the material.
The resistivity is defined as $\rho \equiv 1 / \sigma$, and is a more commonly used material parameter which linearly depends on temperature:

$$
\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]
$$

The definition of resistance
(Ohm's Law): $\quad R \equiv \frac{\Delta V}{I}$

Its relationship
with material and $\quad R \equiv \rho \frac{l}{A}$ shape:

Resistors in Series and in Parallel

$R_{1} \quad R_{2}$

$\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

Resistor connections

In series.

Condition: $I=I_{1}=I_{2}$ Result:

$$
\Delta V=\Delta V_{1}+\Delta V_{2}
$$

$$
R_{e q}=\frac{\Delta V}{I}=\frac{\Delta V_{1}+\Delta V_{2}}{I}=\frac{\Delta V_{1}}{I_{1}}+\frac{\Delta V_{2}}{I_{2}}=R_{1}+R_{2}
$$

In parallel.
Condition: $\quad I=I_{1}+I_{2}$ Result:

$$
\Delta V=\Delta V_{1}=\Delta V_{2}
$$

$$
\frac{1}{R_{e q}}=\frac{I}{\Delta V}=\frac{I_{1}+I_{2}}{\Delta V}=\frac{I_{1}}{\Delta V_{1}}+\frac{I_{2}}{\Delta V_{2}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Resistor connections

In series,

$$
\because I=I_{1}=I_{2}
$$

voltage sharing $\frac{\Delta V_{1}}{\Delta V_{2}}=\frac{R_{1}}{R_{2}}$
power sharing $\quad \frac{P_{1}}{P_{2}}=\frac{R_{1}}{R_{2}}$

In parallel,

$$
\because \Delta V=\Delta V_{1}=\Delta V_{2}
$$

current sharing $\frac{I_{2}}{I_{1}}=\frac{R_{1}}{R_{2}}$
power sharing $\quad \frac{P_{2}}{P_{1}}=\frac{R_{1}}{R_{2}}$

Resistors connections, summary

- In series

$$
\begin{gathered}
I=I_{1}=I_{2}=I_{3}=\ldots \\
R_{e q}=R_{1}+R_{2}+R_{3}+\ldots \\
\Delta 1 \\
\Delta V_{1}: \Delta V_{2}: \Delta V_{3}: \ldots=R_{1}: R_{2}: R_{3}: \ldots \\
P_{1}: P_{2}: P_{3}: \ldots=R_{1}: R_{2}: R_{3}: \ldots
\end{gathered}
$$

- In parallel

$$
\begin{gathered}
\Delta V=\Delta V_{1}=\Delta V_{2}=\Delta V_{3}=\ldots \\
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots \\
I_{1} R_{1}=I_{2} R_{2}=I_{3} R_{3}=\ldots \\
P_{1} R_{1}=P_{2} R_{2}=P_{3} R_{3}=\ldots
\end{gathered}
$$

Combinations of Resistors

- The $8.0-\Omega$ and $4.0-\Omega$ resistors are in series and can be replaced with their equivalent, 12.0Ω
- The $6.0-\Omega$ and $3.0-\Omega$ resistors are in parallel and can be replaced with their equivalent, 2.0Ω
- These equivalent resistances are in series and can be replaced with their equivalent resistance, 14.0Ω

More examples

Direct Current and Alternating Current

- When the current direction (not magnitude) in a circuit does not change with time, the current is called a direct current (DC).
- constant current magnitude, like the one powered through a battery, is a common, but special case of DC.
- When the current direction (often also the magnitude) in a circuit changes with time, the current is called an alternating current (AC).
- The current from the wall outlet is AC.
- The current from your car's alternator is AC. Question: how to charge the battery with the alternator? Question: are you even interested in the first question?

Model of a battery

- Two parameters, electromotive force (emf), ε, and the internal resistance r, are used to model a battery.
- When a battery is connected in a circuit, the electric potential measured at its + and terminals are called The terminal voltage ΔV, with

$$
\Delta V=\varepsilon-I r
$$

- If the internal resistance is zero (an ideal battery), the terminal voltage equals the emf ε.
- The internal resistance, r, does not change with external load resistance R, and this provides the way to measure the internal resistance.

Battery power figure

The power a battery generates (ex. thrgh chemical reactions):

$$
P=\varepsilon \cdot I=(R+r) \cdot I^{2}
$$

The power the battery delivers to the load, hence efficiency:

$$
\begin{aligned}
& P_{\mathrm{load}}=\Delta V \cdot I=R \cdot I^{2} \\
& \text { efficiency }=\frac{P_{\mathrm{load}}}{P}=\frac{R}{R+r}
\end{aligned}
$$

The maximum power the battery can deliver to a load
From $P_{\text {load }}=R \cdot I^{2}$ and $\varepsilon=(R+r) \cdot I \quad$ We have $P_{\text {load }}=\frac{R}{R+r} \varepsilon^{2}$
Where the emf ε is a constant once the battery is chosen.
From $\frac{d P_{\text {load }}}{d R}=\left(\frac{1}{(R+r)^{2}}-\frac{2 R}{(R+r)^{3}}\right) \varepsilon^{2}=0$
We get $R=r$ to be the condition for maximum $P_{\text {load }}$, or power delivered to the load.

Battery power figure

One can also obtain this result

 from the plot of$$
P_{\mathrm{load}}=\frac{R}{R+r} \varepsilon^{2}
$$

Where when $R=r$
$P_{\text {load }}$ reaches the maximum value
The efficiency of the battery at this point is 50% because
efficiency $=\frac{P_{\text {load }}}{P}=\frac{R}{R+r}$

circuits with 2+ batteries: Kirchhoff's Rules

- A typical circuit that goes beyond simplifications with the parallel and series formulas: ask for the current in the diagram.
- Kirchhoff's rules can be used to solve
 problems like this.

Rule 1: Kirchhoff's Junction Rule

- Junction Rule, from charge conservation:
- The sum of the currents at any junction must equal zero
- Mathematically:

$$
\sum_{\text {jumen }} I=0
$$

- The example on the left figure:

(a)

(b)

$$
I_{1}-I_{2}-I_{3}=0
$$

Rule 2: Kirchhoff's Loop Rule

- Choose your loop
- Loop Rule, from energy conservation:
- The sum of the potential differences across all elements around any closed circuit loop must be zero
- Mathematically:

$$
\sum \Delta V=0
$$

closed loop

- One needs to pay attention the sign (+ or -) of these potential changes, following the chosen loop direction.

Remember two things:

1. A battery supplies power. Potential rises from the "-" terminal to " + " terminal.
2. Current follows the direction of electric field, hence the decrease of potential.

Kirchhoff's rules Strict steps in solving a problem

Step 1: choose and mark the loop.
Step 2: choose and mark current directions. Mark the potential change on resistors. Step 3: apply junction rule:

$$
I_{1}+I_{2}-I_{3}=0
$$

Step 4: apply loop rule:
L1: $+2.00 I_{3}-12.0+4.00 I_{2}=0$
L2: $-8.00-2.00 I_{3}-6.00 I_{1}=0$

6.00Ω

Step 5: solve the three equations for the three variables.

One more example

Step 1: choose and mark the loop.
Step 2: choose and mark current directions. Mark the potential change on resistors.
Step 3: apply junction rule:

$$
I_{1}+I_{2}-I_{3}=0
$$

Step 4: apply loop rule:
L1: $+6.0 I_{1}-10.0-4.0 I_{2}-14.0=0$
$L 2:-2.0 I_{3}+10.0-6.0 I_{1}=0$
Step 5: solve the three equations for the three variables.

RC Circuits, solve with Kirchhoff's rules

- When a circuit contains a resistor and a capacitor connected in series, the circuit is called a RC circuit.
- Current in RC circuit is DC, but the current magnitude changes with time.
- There are two cases: charging

(b) and discharging (c).

Charging a Capacitor

When the switch turns to position a, current starts to flow and the capacitor starts to charge.

Kirchhoff's rule says:

$$
\varepsilon-\Delta V_{c}-\Delta V_{R}=0
$$

Re-write the equation in terms of the
 charge q in C and the current l, and then only the variable q :

$$
\varepsilon-\frac{q}{C}-R I=0 \text { and then } \varepsilon-\frac{q}{C}-R \frac{d q}{d t}=0
$$

Solve for q :
$q(t)=C \varepsilon\left(1-e^{\frac{-t}{R C}}\right)$
The current $/$ is

$$
I(t)=\frac{d q}{d t}=\frac{\varepsilon}{R} e^{\frac{-t}{R C}}
$$

Here $R C$ has the unit of time t, and is called the time constant.

Charging a Capacitor, graphic presentation

- The charge on the capacitor varies with time
- $q(t)=C \varepsilon\left(1-e^{-t / R C}\right)$

$$
=Q\left(1-e^{-t / R C}\right)
$$

- The current decrease with
 time

$$
I(t)=\frac{\varepsilon}{R} e^{-t / R C}
$$

- τ is the time constant

$$
\text { - } \tau=R C
$$

Discharging a Capacitor

When the switch turns to position b, after the capacitor is fully charged to Q, current starts to flow and the capacitor starts to discharge.

Kirchhoff's rule says:

$$
\Delta V_{c}-\Delta V_{R}=0
$$

Re-write the equation in terms of the
 charge q in C and the current l, and then only the variable q :

$$
\frac{q}{C}-R I=0 \text { and then } \frac{q}{C}-R \frac{-d q}{d t}=0
$$

Solve for q :

$$
q(t)=Q e^{\frac{-t}{R C}}
$$

The current $/$ is

$$
I(t)=-\frac{d q}{d t}=\frac{Q}{R C} e^{\frac{-t}{R C}}
$$

Connections to EE

A low-pass filter

A MOSFET:

Reading material and Homework assignment

Please watch this video (about 50 minutes each): http://videolectures.net/mit802s02 lewin lec10/

Please check wileyplus webpage for homework assignment.

